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ABSTRACT
Software must be adapted to accommodate new features in
the context of changing requirements. In this paper, we
illustrate how applications with aspect weaving capabili-
ties can be easily and dynamically adapted with unforseen
features. Aspects were used at three levels: in the con-
text of semantic analysers, within a BPEL engine that or-
chestrates Web Services, and finally within BPEL processes
themselves. Each level uses its own tailored domain-specific
aspect language that is easier to manipulate than a general-
purpose one (close to the programming language) and the
pointcuts are independent from the implementation.

Categories and Subject Descriptors
D.1 [Programming Techniques]: General; D.2.10 [Design]:
Methodologies

General Terms
Design, Languages

Keywords
Software adaptability, Aspect-Oriented Programming (AOP),
weaver, domain-specific aspect language, Business Process
Execution Language (BPEL)

1. INTRODUCTION
Applications need to be designed in such a way that en-

ables them to easily adapt as new requirements emerge. As-
pect weaving at the application level provides a mechanism
for delivering such adaptability and extensibility. To this
end, there is a need for Domain-Specific Aspect Languages
that are simpler to use and understand than general-purpose
ones (close to the implementation). To demonstrate this, we
look at the use of aspects at three levels:

1. In the semantic analysers implemented with our devel-
opment toolkit, named SmartTools [15];

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0002 ...$5.00.

2. Within an adaptable business process engine construct-
ed on top of the toolkit semantic analysers;

3. And within extensible business processes built on top
of that engine.

Our key contribution is to demonstrate an approach to
achieving application adaptation and extension by provid-
ing integrated support for aspect weaving. We show the
benefits of bringing this programming technology to the ap-
plication level. This approach has been proven to work on
applications that are of industrial significance (such as our
example). The key ideas of Aspect-Oriented Programming
(AOP) [10] are applied to different settings.

This paper is organised as follows. For each of the levels,
the three next sections describe respectively i) what adapt-
ability and extensibility are, ii) what aspect weaving is and
how it delivers adaptability and extensibility, and finally iii)
how domain-specific aspect languages suit our needs better
than a general-purpose one. Section 5 provides architec-
tural details. Then Section 6 presents the related work and
we conclude the paper in Section 7.

2. ADAPTABILITY AND EXTENSIBILITY
Due to fierce competition between companies, the time-

to-market for new products must be shortened and any new
emerging feature or requirement quickly integrated. In this
context, software should have the ability to be quickly mod-
ified to evolve and to accomodate new requirements while
remaining easy to maintain.

Adaptability is an important non-functional requirement
that needs to be taken into consideration very early in the
life cycle when the software architecture is designed. It im-
proves software reuse, but may impede performance. Hence,
there is a trade-off between adaptability and performance.
Software can be adapted on different axes [20], depending
on its domain. Adaptations can be i) static or dynamic,
ii) manual or automatic, and iii) proactive or retroactive.
Static adaptations involve software code modifications where-
as dynamic ones only modify its run-time behavior. Manual
adaptations can be constrasted with automatic ones which
are performed by the software itself when a certain condition
is reached (adaptive software). Proactive adaptations are
triggered before a change occurs in the environment whereas
retroactive ones are performed after, as a consequence.

Extensibility can be seen as a static adaptation that ex-
tends the business logic of an application (the functional
part). For example, an interpreter can be extended to deal
with the addition of a new instruction into the language.



Using a dynamic code loader, dynamic extensions by hot-
swapping modules are possible. Extensibility can be classi-
fied into three forms [27]: the white-box, the gray-box, and
the black-box. With white-box extensibility, the least re-
strictive and most flexible form, applications are modified
or new code embedded into them. Two sub-categories exist
[2]: the open-box and the glass-box. With open-box extensi-
bility, changes are directly performed into the original source
code, mixing the extension code and the original application
code. With glass-box extensibility, the application code can
be viewed but it is separated from the extension code. With
black box extensibility, typically the easiest to use but the
least flexible, the original code is encapsulated and explicitly
contains the extensibility mechanism. Gray-box extensibil-
ity is a trade-off between the two other approaches as the
original code cannot be examined but its binary can be ex-
tended.

We now describe what adaptability and extensibility mean
in the context of our three examples: the semantic analy-
sers built using the SmartTools toolkit, a business process
engine more specifically a BPEL engine, and its business
processes. The first two examples focus on static glass-box
extensibility and manual dynamic adaptations, whereas the
third one on dynamic extensibility in a multi-thread context.

2.1 Semantic analysers described in Smart-
Tools

It is important that“systems infrastructure”software such
as application servers, virtual machines, middleware, com-
pilers, and operating systems are open and adaptable; oth-
erwise no user-specific feature can be added after implemen-
tation time. Integrating new functionalities requires the re-
development of the whole software.

To tackle this problem, SmartTools, a tool factory [9],
provides a way to build extensible and adaptable semantic
analysers dedicated to Domain-Specific Languages (DSLs).
These analysers can be easily refined and updated when DSL
definitions change, and their behaviors can be enhanced. For
example, the core logic of an interpreter can be implemented
as a semantic analyser and the visualisation of the environ-
ment as an adaptation to that analyser. The code of the in-
terpreter is easier to write and to maintain as well as the code
of the visualisation that is usually scattered. Another exam-
ple of adaptation for this interpreter is constraint checking
(design by contracts) on the environment values, prior to
interpreting any instruction so as to ensure a safe execution.
Also at development or maintenance stage, the interpreter
can be enhanced with debugging information. As the archi-
tecture of the interpreter is flexible, the visualisation code
or any other adaptation code is transparent to its core busi-
ness logic. Adding and removing such adaptations, on the
fly, are two important operations, particularly in the context
of system infrastructures or legacy systems.

The designers of DSLs may not possess a deep knowlegde
of computer science. The solution provided by SmartTools

delivers semantic analysis frameworks that are easy to use
and build on established techniques.

2.2 BPEL engine
With Web Services [23], there is a layer of abstraction

above the components that makes it possible to orchestrate
interactions between different services. The most well es-
tablished orchestration technology for Web Services is BPEL

(Business Process Execution Language) [3]. This XML-based
language is rather small [12] but sufficient to handle variables
with scopes, loops, conditional branches, synchronous and
asynchronous communications, concurrent activities with cor-
related messages, transactions, and exceptions. With this
language, a business process can be described by gluing dif-
ferent Web Services together thereby creating a new Web
Service. This process description is interpreted by a BPEL
engine.

In our view, the core logic of a BPEL engine should be
minimal and compliant with the specifications but also easy
to adapt and extend to cope with new requirements and
features. As BPEL is an extensible language (that is new
instructions can be used in a process description to cope
with user-specific needs), its engine also needs to be exten-
sible to integrate new behaviours for user-specific instruc-
tions. Examples of such extensions may be to introduce a
new instruction to launch an executable or to replace a Web
Service.

Enhancing the engine with orthogonal functionalities such
as execution monitoring can be useful to manage the run-
ning process. Such functionalities should, however, be easy
to disable, at any stage of the process execution, as they
are themselves performance-inefficient. With such capabil-
ities, process executions can be debugged during develop-
ment stage, monitored, and even driven by agents at pro-
duction stage. It is possible, for example, to embed, without
modifying the engine implementation, a planner on the top
of the latter. From events triggered by a monitor, this plan-
ner can take actions to avoid any disruption and to adjust
the process. Such a tool can be useful particularly for long
running processes.

Selecting Web Services is another example of a useful
adaptation. Instead of choosing at design or deployment
time which Web Service to use, the engine can choose one
at runtime, in accordance with specified criteria and con-
straints, on the first occasion the service is invoked. There
is also a need to be able to replace, at runtime, a Web Ser-
vice that is slow, unresponsive, or no longer useful for the
current iteration. In this way, the workflow can be adapted
to improve performance or QoS (Quality of Service), or to
avoid termination because there is no answer from one part-
ner, or to use another similar service in a loop or on user
demand. The substitution can only occur if the new Web
Service is service-signature compliant (same WSDL descrip-
tion as there is no service adaptor) and if the service to be
replaced is in a stable state (not in a transaction, and with-
out an initialisation or one that does not impact on other
partners).

A further useful adaptation is to execute local code for in-
tegration purposes between two service invocations, as pro-
posed in BPELJ [4]. Converting message data into another
format to prepare messages can be an example of the use of
this capability. In this way, creating new Web Services to
deal with business internal operations can be avoided.

2.3 BPEL processes
The existing service description languages and Web Ser-

vice flow languages address business process dynamics and
non-functional properties poorly. For example, in the cur-
rent BPEL version, it is not possible, at runtime, to add
on demand an unforeseen Web Service into the process, to
replace Web Services, or to hot-fix processes. The process



needs to be stopped to be extended. For long running pro-
cesses, adapting a workflow by stopping it is not acceptable.
An important example of such hot-fixes is the composition,
on demand, of a new Web Service and thus the addition of
its choreography interface into the process. We have been
investigating a specific case in which services are used to
support a large Grid-based computational chemistry appli-
cation [13]. In this application, there is a need for steering,
in other words, changing the end of the process dependent
upon results identified in earlier stages.

BPEL processes need to have the ability to be extended
to meet unforeseen post-deployment requirements and user
needs. Hot-deploying Web Services requires the addition of
new computational instructions into the process, whereas
hot-fixing implies the replacement or deletion of some in-
structions.

3. ASPECT WEAVING
Objects have proven to be too small as units of reuse

and inadequate to capture crosscutting concerns. New pro-
gramming paradigms such as components and AOP have
emerged to complement object-oriented programming. With
aspects, crosscutting concerns can be cleanly modularized,
making development, maintenance, and reuse easier. An
aspect may contain structure refinements (for example, ex-
tending a class), different code fragments, and location de-
scriptions to identify where to plug the code fragments in.
In AspectJ [22], the most well-known AOP implementation
for the Java programming language, these different pieces
are respectively called inter-type declarations, advice, and
pointcuts; the well-defined points in the program flow that
can be selected by the pointcuts are called join points. The
ultimate aim of AOP is to replicate the same execution as
when the code of the business logic and aspects was tan-
gled. This composition is performed by an aspect weaver,
either by source code transformation or by use of hooks, at
compilation or at execution time.

In this paper, we show that applications with aspect-
weaving capabilities can be quickly adapted to meet new
requirements. Aspects that can be plugged in on the fly
(dynamic aspects) can be one way of solving the application
adaptability issue. The first step to adding such capabil-
ities is to identify the points in the application flow (the
join points) where possible adaptations or extensions may
be required in the future. Then, depending on the AOP im-
plementations, the application architecture may need to be
slightly modified to integrate hooks at these points and some
logic to manage the plugging in and removal of aspects. The
application itself is the aspect weaver. We now detail what
the join points are for our three examples.

3.1 Semantic analysers described in Smart-
Tools

The possible points to adapt semantic analysers are at
each instruction treatment. With wrappers around these
treatments, the base code can be easily adapted in different
ways. At execution time, aspects can be manually plugged
in or removed, before or after these join points, on a partic-
ular language instruction (operator, for example the while

operator), on a specific set of operators (DSL type), or on
all the operators. Composing different aspects at a same
join point is done in a first-plugged-in first-executed order-
ing policy. A priority ordering policy might be introduced

in the weaver in case of the around weaving use (that indi-
cates the substitution of the advice execution for the base
code one). In order to have powerful adaptations, the exe-
cution context (that is the current node and the treatment
arguments) is provided by the weaver to the advice.

Analysers, as explained in the previous section, also need
to be extended as a new instruction can be added in the DSL
or their semantic refined. We have chosen to encapsulate
each analyser in an independent module with a method per
DSL operator. With this design, they are easy to extend, in
a glass-box manner, by inheritance and method overriding.

3.2 BPEL engine
As the BPEL engine is an interpreter based on a Smart-

Tools semantic analyser, it has the same join points and
extensibility mechanisms as those described in the previous
sub-section. The difference lies in the fact that these points
need to be identified in a finer grain manner. Not only BPEL
operators or type names can be used in this order but also
attributes, or location in the document (such as the second
invoke in a loop).

As we wanted not only a BPEL engine that is standard
compliant, but one that also contains extra features such
as a BPEL aspect weaver, we have chosen to implement
the latter as semantic analyser adaptations, that is aspects
plugged onto the engine. In this way, the extra features are
transparent to the engine and can be plugged in or out at
any time during the execution.

3.3 BPEL processes
The pointcuts are the same as those of the BPEL engine

aspects but the weaving is different as these aspects have
as a goal to extend (to hot-fix) BPEL documents. Weav-
ing such an aspect implies transforming the document and
the BPEL engine environment (for example, to add a new
variable), at execution time, in a multi-thread context as
each activity in a flow is interpreted in a different thread.
These transformations can only be applied to the processes
at precise points, under certain conditions and when all the
threads are suspended, to ensure the stability of the system.
For example, replacing a BPEL sequence can only occur if
the engine has not started interpreting it.

The dynamic aspect technology is our solution to address
dynamic composition of Web Services: the choreography in-
terface can be seen as pieces of advice and where to weave
them as pointcuts. Composition is an important example of
such hot-fixes.

4. DOMAIN-SPECIFIC ASPECT LAN-
GUAGES

The most popular aspect language is AspectJ [22]. It
is a general-purpose aspect language for Java. Because of
this generality, the language is low-level [25]. Its point-
cut language is rich as there exists many join points to
identify, making its use more difficult, especially for non-
programming experts. Typically, the full range of point-
cuts and inter-type declarations is not used when aspects
are specified for an application.

We believe that each class of applications should have its
own Domain-Specific Language (DSL) [6] to specify its as-
pects. In this way, the aspect language is tailored to the
application, gaining in conciseness and easiness of use. De-
veloping a DSL [11], particularly when you have the domain



knowledge, is not that complicated. Tools or formalisms to
support DSL development exist, most notably XML Schema
to describe the structure of the language, XML parsers, and
the DOM API to manipulate the documents.

The main questions to focus on when designing a new
Domain-Specific Aspect Language (DSAL) are the following:

• How the join points should be identified and with what
granularity ?

• What structural introductions into the base level should
be enabled (for example, adding new fields to a class) ?

• What information should be available in the advice to
enable powerful adaptations, recognizing that there is
a trade-off in which such adaptations can destabilize
the system ?

The issue of how inter-aspect dependencies should be han-
dled when different aspects are composed (is an ordering
needed?) is related to the weaver design. To illustrate, we
now present the DSALs of our three examples.

4.1 Semantic analysers described in Smart-
Tools

As described above, we wanted to be able to plug in Java
code fragments just before or after semantic treatments and
to identify these points either with a DSL operator name
or a DSL type name. With AspectJ, the pointcuts would
be too low level as the identification of the semantic treat-
ments would be based on the method names and parame-
ter type names. In case where the analyser method names
are changed or a new operator is added into a type, these
pointcuts would need to be updated. An independance (ab-
straction) from the analyser implementation was therefore
required. Enabling the introduction of new members (fields,
methods, or constructors) into the analysers has proven not
to be useful.

We have chosen to design an aspect as a Java class that
implements an interface with two methods, before and af-

ter (see Figure 1) as it can be easier to understand. These
methods are two pieces of advice that can be executed re-
spectively before and after the semantic treatment of an op-
erator. Thereby, aspects can be extended by inheritance and
benefited from any object-oriented programming advantage.
When an aspect is deployed, information on which oper-
ator or type it should be plugged into is provided. The
three methods to deploy it are given in Figure 2 as well as
the equivalent AspectJ pointcuts1 as comparison. The first-
plugged-in first-executed ordering policy is applied if more
than one aspect is plugged in at the same join point.

4.2 BPEL engine
We have built a BPEL engine as an interpretor based on a

SmartTools semantic analyser. Therefore, it has the same
join points but the requirements for its DSAL are slightly
different: the pointcut language should be finer grain as well
as independant from the implementation, and aspects may
need to share information, though this means that they are
interdependent. Only BPEL documents should be the fo-
cus of the users of this DSAL not the implementation of
the engine which should remain a black box. To have more

1We are not AspectJ experts. Any suggestion to improve
the pointcuts is welcome.

package uk.ac.ucl.cs.bpel.aspect.engineAspect;

import java.util.ArrayList;
import fr.smarttools.core.tree.UntypedNode;
import fr.smarttools.core.tree.visitor.aspect.Aspect;
import uk.ac.ucl.cs.bpel.aspect.engineAspect.AspectRef;

public class EngineAspectManager implements Aspect {
private UntypedNode curNode = null;

public void before(Type context, Object[] vParams)
throws VisitorException {

curNode = (UntypedNode) vParams[0];
executeAdviceIfAny("getAspectsBefore", curNode);

}

public void after(Type context, Object[] vParams)
throws VisitorException {

curNode = (UntypedNode) vParams[0];
executeAdviceIfAny("getAspectsAfter", curNode);

}

private void executeAdviceIfAny(String methN,
UntypedNode node) {

ArrayList aspectRefs = executeMethod(methN, node);
if (aspectRefs != null) {
if (aspectRefs.size() > 0) { // advice to execute
AspectRef aspRef;
String aspN;
String adviceN;
for (int i=0; i<aspectRefs.size(); i++) {
aspRef =((AspectRef)aspectRefs.get(i));
aspN = aspRef.getAspectName();
if (aspectDB.isPresent(aspN)) {
adviceN = aspRef.getMethodName();
executeMethod(adviceN, aspectDB.getAspect(aspN));

} else {
// do nothing. The aspect has been unplugged.

}
}}}} ...

}

Figure 1: Example of a SmartTools aspect: the
BPEL aspect weaver aspect

addAspect(aspectObject);
pointcut p1(fr.smarttools.core.tree.ast.UntypedNode n,

uk.ac.ucl.cs.bpel.engine.BPELEnv env) :
target(BPELEngine) &&
args(n, env) &&
execution(* execute(uk.ac.ucl.cs.bpel.ast.*Node,

uk.ac.ucl.cs.bpel.engine.BPELEnv);

addAspectOnOperator("invoke", aspectObject);
pointcut p2(uk.ac.ucl.cs.bpel.ast.InvokeNode n,

uk.ac.ucl.cs.bpel.engine.BPELEnv env) :
execution(* BPELEngine.execute(n, env));

addAspectOnType("Activity", aspectObject);
pointcut p3(uk.ac.ucl.cs.bpel.ast.ActivityType n,

uk.ac.ucl.cs.bpel.engine.BPELEnv env) :
target(BPELEngine) &&
args(n, env) &&

( execution(* execute(uk.ac.ucl.cs.bpel.ast.InvokeNode,
uk.ac.ucl.cs.bpel.engine.BPELEnv))

|| execution(* execute(uk.ac.ucl.cs.bpel.ast.WhileNode,
uk.ac.ucl.cs.bpel.engine.BPELEnv))

|| similar pointcut for all the operators that
belong to this type (14 operators)

);

Figure 2: The three SmartTools methods to deploy
an aspect (in bold) and their equivalent AspectJ
pointcuts underneath



powerful adaptations, direct access to the BPEL engine en-
vironment as well as the current node should also be enabled
from the advice.

We have decomposed a BPEL engine aspect into two parts:
the specifications of the pointcuts and a Java class that con-
tains the pieces of advice. To avoid learning a new language
for the pointcuts, we have chosen XPath, a language spe-
cialized for addressing parts of an XML document (a BPEL
process is an XML document). Therefore only static values
of the documents can be used to identify the join points;
the dynamic ones can filter the code execution in the advice
bodies. XPath is a well-known powerful standard for which
widely available tools exist that our AOP implementation
benefits from. The only restriction we have imposed for im-
plementation purposes is to only address BPEL nodes not
attributes (though the filtering on attributes is enabled).
The first part of an aspect (Figure 3) contains its name
(a fully qualified Java class name), and at least one point-
cut to specify the nodes to select (an XPath expression)
and the advice name (a Java method) to execute before or
after their interpretation. For example, the last pointcut
of Figure 3 indicates that the method shipping (the ad-
vice) of the uk.ac.ucl.cs.test.EngineAspectExample as-
pect should be executed just before the interpretation of
each invoke instruction that has shippingPT with a lns

namespace prefix as value for its portType attribute. The
second part (Figure 4) is the corresponding Java class that
encapsulates the advice code. From any advice method, it
is possible to call methods to get the node that is currently
interpreted (getCurrentNode), the BPEL environment, and
any other aspect plugged in that is identified by its name.

<aspect name="uk.ac.ucl.cs.test.EngineAspectExample">
<after where="//:process" methodName="process"/>
<before where="//:partnerLink" methodName="partnerL"/>
<after where="//:variable" methodName="variable"/>
<before where="//:invoke[@portType=’lns:shippingPT’]"

methodName="shipping"/>
</aspect>

Figure 3: Pointcut specifications of an engine aspect

package uk.ac.ucl.cs.test;
import uk.ac.ucl.cs.bpel.ast.VariableNode;

public class EngineAspectExample extends
uk.ac.ucl.cs.bpel.aspect.engine.EngineAspect {

public void variable() {
VariableNode node = (VariableNode) getCurrentNode();
System.out.println("Var decl=" + node.getNameAttr());

}
public void process() {}
public void partnerL() {}
public void shipping() {}

}

Figure 4: Advice code of an engine aspect

4.3 BPEL processes
For this DSAL, the pointcuts are the same as those in

the BPEL engine, but there is a requirement to introduce or
remove members (such as variables, partners, catch excep-

tion handlers, etc.) in/from the process. The advice bodies
are also different as they are BPEL-based. As the process
fixes (aspects) can be plugged in on the fly, the execution
environment needs to be updated with the new members
that are involved in the process. The possible modifications
that can be performed on a process are inserting, replacing,
or removing BPEL instructions. By contrast to the other
DSALs, these aspects do not need to be removable.

A process aspect (Figure 5) is decomposed into three parts:
i) the declarations of member addition or removal (vari-
ables, catches, catch all, compensate handlers, event han-
dlers, partners, partner links, correlation sets), ii) the ac-
tions to perform on the process (insert, replace, or delete)
and at which locations (also XPath expressions), and finally
iii) the BPEL instruction fragments (advice bodies) to add
into the process. For example, when the aspect of Figure 5
is plugged into an existing business process, a new variable,
var1, is added to the scope scope1 and the instructions (the
while statement) of the advice advice1 are appended just
after the second invoke instruction of the process if it is
possible.

Workflow aspect ProcessAspectExample
Members {

add <variable name="var1" messageType="orderType"/>
in scope1

}
Pointcuts {

after "//:invoke[2]" insert advice1
}

Advices {
advice1
<while condition="bpws:getVariableData(order) > 100">
...
</while>

}

Figure 5: Example of a process aspect

5. ARCHITECTURES
This section details the architecture and implementation

of each example.

5.1 Semantic analysers described in Smart-
Tools

Each SmartTools semantic analyser is based on the vis-
itor design pattern [7, 14]. It contains one visit method
per language operator and traverses, from top to bottom,
the ASTs (Abstract Syntax Trees) that represent the pro-
grams or documents that are being analysed. Because of
the operator class implementation, these trees are not only
strictly typed to meet the pattern requirements but are also
based on the DOM API, enabling XPath selections of their
nodes, which is useful for the implementation of our aspect
languages.

These classes are generated by the toolkit from the lan-
guage structure definition (for example, an XML Schema)
as well as a default tree visitor that can be extended by in-
heritance and visit method overriding to develop a specific
semantic analyser. To ease the writing and the maintenance
of the analysers, SmartTools offers additional features: i)
the visit methods and traversal can be configured, ii) the
redirection methods usually named accept are hidden, and



finally iii) the analysers can also be adapted dynamically
through aspects. By these means, only appropriate nodes
are visited (this ability can be useful on large trees), type
castings on the parameters as well as on the return values
are avoided, and the given method names are more mean-
ingful. Each concern can be modularized instead of being
scattered in the different methods of the analyser. All these
benefits are derived from the intensive use of generative pro-
gramming.

Typically, redirection methods are useful in the Java pro-
gramming language as it does not support the late-binding
on dynamic types of method parameters. With these meth-
ods, the right method according to the dynamic types of
the parameters is executed. SmartTools handles the redi-
rection methods internally and hides the underlying com-
plexity from developers. For example (Figure 6), the exe-

cute method on the Activity son is directly called instead
of node.getActivityNode().accept(env). There is no ac-

cept method in each operator class. As the method sig-
natures can be configured, these classes would have been
modified each time a new analyser would have been defined
to integrate the corresponding accept methods. Instead
each recursive call is forwarded to a central method that
dispatches according to the operator id of the current node
to the appropriate analyser method. To avoid using reflec-
tion, a method is generated for each analyser that sorts all
the ”visit” method calls in a switch in function of the op-
erator ids.

package uk.ac.ucl.cs.bpel.engine;

import uk.ac.ucl.cs.bpel.BPELEnv;
import uk.ac.ucl.cs.bpel.visitors.TravBPELEngVisitor;
import uk.ac.ucl.cs.bpel.ast.*;
import fr.smarttools.core.tree.visitor.VisException;

public class BPELEngine extends TravBPELEngVisitor {
public Object execute(WhileNode node, BPELEnv env)

throws VisException {
executeStandardElements(node, env);
String condition = node.getConditionAttr();
if (testCondition(condition, env) == true) { // true
execute(node.getActivityNode(), env); // activity
execute(node, env); // recursive while execution

}
return null;

}
...

}

Figure 6: Code snippet of a visitor: the BPEL en-
gine

Because of this central method, it was relatively straight-
forward to enhance the semantic analysers with a specific
AOP. By integrating weaving mechanisms before and after
the dispatch method, the semantic analysers have been made
adaptable.

5.2 The BPEL engine
The BPEL engine is an example of SmartTools seman-

tic analysers. Glass-box extension of the default visitor,
TravBPELEngVisitor, generated from the BPEL structure
definition and the visitor configuration is shown in Figure 6.
The core business logic of the engine is contained in this anal-
yser, except for the management of the namespaces which
is implemented as an aspect. Namespaces can be defined

anywhere in documents (attribute xmlns), however they can
only be used inside the node that defined them and its nested
nodes. Instead of scattering code in each visit method, to
collect the namespaces and to remove them from the envi-
ronment at the end of the operator interpretation, we have
chosen to modularize it in an aspect, plugged on all the oper-
ators. The management of source and target links that drive
the process execution can be implemented as an aspect that
can also be plugged on all the operators that belong to the
Activity type.

All extra features, not compliant with the standards, are
adaptations (aspects), transparent to the engine core. The
environment visualisation as well as the engine aspect man-
ager are examples of such adaptations. Having a specific
AOP on the top of the engine enables other adaptations
such as monitoring the processes, preparing the Web Ser-
vice messages, or checking constraints (Figure 7).

The engine aspect weaver is itself an aspect (Figure 1).
When an engine aspect is plugged, it is registered on the
system and the different nodes of the AST selected by the
XPath expressions of its pointcuts are annotated with the
aspect name and the name of the advice to execute. Before
and after interpreting any instruction, the weaver checks if
there is any annotation. If one exists and if the aspect is
still registered (plugged), a call by reflection is performed
to execute the advice. Unweaving an aspect only means
removing it from the registry.

5.3 BPEL processes
The workflow aspect manager is also an adaptation, inde-

pendent from the engine. When a process aspect is plugged
in, it suspends the engine at some stable points and performs
the transformations at the nodes identified by the XPath
expressions if possible. The workflow aspect manager also
needs to get access to the data environment to add or re-
move members. By propagation, the engine aspects already
plugged in are applied to any new BPEL instruction added
by insertion or replacement.

6. RELATED WORK
Constructing applications that are easy to adapt and ex-

tend is a long-standing goal in software engineering. Solu-
tions to offer greater modularisation, variation, and config-
urability to the code have been proposed such as generative
programming, meta-programming and reflection, aspect-ori-
ented software development, and model-driven architecture.
Given the scope of this work, it is impossible to review ev-
erything. We have therefore chosen to make reference to
only the most immediate relevant works.

Using aspects for dynamic adaptations has been proposed
in [26]. In this work, a non-adaptive distributed conferenc-
ing application is transformed into one that is adapt-ready.
The adaptation infrastructure - wrappers and dynamic man-
agement code of the adaptations (conditions and actions) -
is added to the application core, using AspectJ. At runtime,
adaptations can be loaded or removed, and the application
behaves as a code weaver with the actions to execute when
the corresponding conditions are satisfied. Embedding code
weaving mechanisms inside the application core brings flexi-
bility. We believe that with the new capability of annotating
Java programs (see JSR 175 [18]), more and more applica-
tions will be code weavers.

Many projects such as [1, 16, 21] are interested in apply-
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ing dynamic aspects into component architectures to have
more flexible and adaptable applications. For example, the
JAsCo infrastructure [21] enables the execution of compo-
nent based applications, which can be dynamically adapted
by aspects. The components (Java Beans) when loaded into
the infrastructure are modified to insert traps at every pub-
lic method which invoke the aspect weaver when they are
called. A management layer based on the JAsCo aspects
[24] was developed to monitor and adapt Web Service appli-
cations.

The JAsCo infrastructure has also its own aspect lan-
guage, a Java language extension, specific for the domain:
the components. Krzysztof Czarnecki and Ulrich Eisenecker
advocate [5] the use of a separate language or a language ex-
tension specialized to the problem instead of a conventional
library approach. The earliest aspect languages, COOL and
RIDL, were domain-specific, respectively for synchronisation
and distribution. The semantic of domain-specific aspect
languages is clear as they are restricted and designed for the
problem. Other interesting work that advocates the use of
Domain-Specific Aspect Languages includes XAspects [19].

A toolkit for making aspect languages for object-oriented
legacy software is proposed in [8], based on a language-
independent weaver as the back-end. This generic weaver
also uses AST transformations to plug the advice code into
the legacy software.

The main problem with weaving new code at runtime is
to ensure the stability of the system. Despite the dynamic
changes, code consistency and structural correctness should
be maintained. Using a restricted set of join points where the
changes can occur may help to check if the changes (aspect)
can be performed safely. Formal models may be used such
as ADEPT [17] in case of dynamic structural changes in
workflows.

7. CONCLUSION
Adaptability and extensibility are requirements that should

be taken into consideration during the application architec-
ture design. The approach outlined in this paper is to pre-
pare applications to cope with dynamic adaptations by in-

serting aspect weaving mechanisms. This approach has been
shown to work. For example, the core of our BPEL engine,
a SmartTools semantic analyser, has been enhanced with
unforeseen adaptations - the BPEL engine aspect weaver
and the BPEL process aspect weaver - in a transparent man-
ner. Aspect tools should themselves use aspects for their
own development. With these adaptations, the engine itself
can be adapted and the processes extended without stop-
ping their interpretation. By these means, Web Service hot-
deployments and workflow hot-fixes are possible. The ben-
efits of these adaptation mechanisms outweigh, we believe,
the potential performance impact. Furthermore, in our case
of applications based on Web Services, this potential per-
formance impact associated with the weaving mechanisms
is not comparable with that due to remote service invoca-
tions.

Designing aspect languages specific for the applications
simplifies the use of aspects, especially for non-programming
experts, as these languages are tailored specifically for a spe-
cific domain and are higher level (hide the complexity) than
general-purpose ones. For instance, our aspects (pointcuts)
are independent from the implementation and therefore do
not need to be updated if the BPEL engine implementation
is changed.

Additional adaptations and extensions to the BPEL en-
gine may be required as its implementation is not finished.
We plan, for example, to be able to select Web Services
at runtime instead of at deployment time and even replace
them if they are no longer compliant with the selection pol-
icy. We want to refine the way process transformations are
performed to ensure the stability of the system. Locations
where these transformations can occur need to be identified
and consistency tests performed.

8. ACKNOWLEDGEMENTS
This work is supported by the Generative Software De-

velopment project funded by BT Group. Anthony Finkel-
stein is grateful for support from an IBM faculty partnership
award. The authors want to thank Didier Parigot from
INRIA Sophia-Antipolis for his work on SmartTools and



Patrik Mihailescu from BT for his comments about this
article as well as Anne Liret.

9. REFERENCES
[1] ObAsCo (Objects, Aspects, and Components)

Research Group. http://www.emn.fr/x-info/obasco/.

[2] E. E. Allen. Designing extensible applications.
Technical report, IBM developerWorks, September
2001. http:

//www-106.ibm.com/developerworks/java/library/j-diag0925/.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, and I. Trickovic. Business Process
Execution Language for Web Services version 1.1.
Technical report, BEA, IBM, Microsoft, SAP, Siebel
Systems, May 2003. http://www-106.ibm.com/

developerworks/webservices/library/ws-bpel/.

[4] M. Blow, Y. Goland, M. Kloppmann, F. Leymann,
G. Pfau, D. Roller, and M. Rowley. BPELJ: BPEL for
Java. BEA and IBM, March 2004. white paper, http:

//www-106.ibm.com/developerworks/java/library/j-diag0925/.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programming, chapter 8. Addison-Wesley, 2000. ISBN

0-210-30977-7.

[6] A. V. Deursen, P. Klint, and J. Visser.
Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, 35(6):26–35,
June 2000. http://www.cwi.nl/~arie/papers/dslbib.pdf.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley Pub Co, January
1995. ISBN 0201633612.

[8] J. Gray and S. Roychoudhury. A Tecgnique for
Constructing Aspect Weavers Using a Program
Transformation Engine. In K. Lieberherr, editor, the
Third International Conference on Aspect-Oriented
Software Development, pages 36–45, Lancaster, UK,
March 2004.
http://www.cis.uab.edu/gray/Pubs/aosd-2004.pdf.

[9] J. Greenfield and K. Short. Software Factories.
Assembling Applications with Patterns, Models,
Frameworks and Tools. In the second OOPSLA
workshop on Generative Techniques in the context of
Model-Driven Architecture, Anaheim, USA, October
2003.
http://www.softmetaware.com/oopsla2003/greenfield.pdf.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J. M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Akşit and
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