A Sense of Community: A Research Agenda for Software Ecosystems

Slinger Jansen
Utrecht University
s.jansen@cs.uu.nl

Abstract

Software vendors lack the perspective to develop soft-
ware within a software ecosystem. The inability to function
in a software ecosystem has already led to the demise of
many software vendors, leading to loss of competition, in-
tellectual property, and eventually jobs in the software in-
dustry. In this paper we present a research agenda on soft-
ware ecosystems to study both the technical and the busi-
ness aspects of software engineering in vibrant ecosystems.
The results of such research enable software vendors to de-
velop software that is adaptable to new business models and
new markets, and to make strategic choices that help a soft-
ware vendor to thrive in a software ecosystem.

1. Software Ecosystem Perspectives

Software vendors no longer function as independent
units, where all customers are end-users, where there are
no suppliers, and where all software is built in-house. In-
stead, software vendors have become networked, i.e., soft-
ware vendors are depending on service and software suppli-
ers, value-added-resellers, pro-active customers who build
and share customizations, and many others. Software ven-
dors now have to consider their strategic role in the software
ecosystem (SECO) to survive.

SECOs introduce many new research challenges on both
a technical and a business level. In a traditionally closed
market, software vendors are now facing the challenge of
opening up their product interfaces, their knowledge bases,
and in some cases even their software. Software vendors
must decide how open their products and interfaces are,
new business models need to be developed, and new stan-
dards for component and service reuse are required. These
challenges have been identified but have hardly been picked
up by the research community [3]. This research agenda
presents both SECO research challenges and a number of
research examples on SECOs. Many of the research chal-
lenges have been inspired by the book of Messerschmitt and
Szyperski on SECOs [6] and our own research [3, 1, 4].

Anthony Finkelstein
University College London
a.finkelstein@cs.ucl.ac.uk

Sjaak Brinkkemper
Utrecht University
s.brinkkemper @cs.uu.nl

Software vendors have to focus on three different per-
spectives: the software ecosystem level, the software sup-
ply network level, and the software vendor level. On the
software ecosystem level strategic choices must be made
on how a software vendor behaves in a SECO to maximize
profitability. SECO orchestrators, for instance, have control
over the SECO and can develop strategies to keep a SECO
vibrant and profitable for other organizations in the SECO.
On the software supply network level software vendors de-
termine strategies in regards to their immediate buyers and
suppliers, by for instance organizing regular meetings with
plug-in builders, by developing customer and reseller por-
tals, etc. On the software vendor level, vendors establish the
effects of the SECO on their product and service portfolio,
knowledge management, and relationship management. As
an example, guidelines must be developed regarding make-
or-buy decisions and reuse, the software vendor must con-
tinuously decide on exploitation of its complete product and
service portfolio, and the software vendor must determine
how it uses knowledge from the SECO internally.

The three perspectives are modeled in figure 1. The
model is created using the software supply network mod-
eling technique developed by Brinkkemper et al. [1] and
models a software vendor (ISV) in the middle. The software
vendor is supplied with components from an outsourcer and
another software vendor. Furthermore, the vendor supplies
a product (P.1) and a service (S.2) to its customers. Some
competition exists, in the form of an ISV who delivers to
other customers and is supplied by a software vendor. The
software vendor level encompasses all products and ser-
vices supplied by the vendor and the vendor itself. The soft-
ware supply network level considers all buyers and suppliers
who are in direct contact with the software vendor. Finally,
the software ecosystem level encompasses all related soft-
ware organizations in the SECO.

2. Software Ecosystems Level

We define a software ecosystem as a set of businesses
functioning as a unit and interacting with a shared market
for software and services, together with the relationships

Outsourcer

Software vendor Leve

Customer

Joftware supply Network Leve!

Customer

Software Ecosystem Level

Figure 1. Software Ecosystem Perspectives

among them. These relationships are frequently under-
pinned by a common technological platform or market and
operate through the exchange of information, resources and
artifacts. Some examples of SECOs are the MySQL/PHP
SECO, the Microsoft SECO, and the iPhone SECO. These
examples can be used to establish typical characteristics of
SECOs; SECOs can be contained in other SECOs, such as
the Microsoft CRM SECO that is contained in the com-
plete Microsoft SECO. Also, one might refer to the iPhone
SECO with its AppStore as a closed SECO, whereas the
MySQL/PHP SECO is open, since organizations have ac-
cess to its source code and related knowledge bases.
SECO Challenge 1 - Characterisation and modeling
of SECOs. To model SECOs formal characteristics of these
SECOs need to be established. Some example characteris-
tics are size, livelihood, the presence of standards or stan-
dards organizations, and the different roles that software
vendors can take within these SECOs. As an example,
Microsoft and Apple are SECO leaders and orchestrators,
whereas game developers for the iPhone and its AppStore
are SECO followers. The modeling challenge lies in the fact
that no modeling formalisms currently exist for SECOs [1].
SECO Challenge 2 - Developing policies and strate-
gies within SECOs for SECO orchestration. These poli-
cies determine activities, guidelines, standards, and actions
that can be taken to influence the SECO. Some examples of
policies are standardization efforts, certification, and com-
mon delivery channels (in the case of the AppStore example
the iPhone and iPod-Touch are the sole delivery channels).
Strategies include lowering prices for active SECO partic-
ipants, introducing developer conferences and workshops,
introducing democracy in SECOs, and developing common
channels for communication, marketing and development.
SECO Challenge 3 - Determining a strategy to thrive
and make profit in an SSN. Questions that arise are
“Should we go open source?”, “Should we deliver our prod-

ucts and services to small or large numbers of customers?”,
“Are we better at building software or at exploiting soft-
ware?” The true challenge lies in the design of the busi-
ness model of the software vendor. To establish a busi-
ness model, software vendors require modeling techniques
to model the software functionality portfolio, the software
deployment context, the software supply network, and the
financial model [5]. These models assist software vendors
in establishing their different sales and distribution chan-
nels, their main competitors, and their potential partners.

Example: Modeling Ecosystems - Before steering mech-
anisms can be developed for a software vendor in a SECO,
a modeling technique must be devised for SECOs. In this
research a start is made by modeling a small SECO and its
influencing factors. The model is presented to several soft-
ware vendors who are active in the SECO, to validate the
usefulness of the SECO models. A second step in this re-
search will be the development of a vibrance indicator for
an SECO, to enable software developers to choose whether
to become active within the SECO.

Example: Create your own Ecosystem - A software com-
pany in the Netherlands that supplies traditional enterprise
resource planning products has recently developed a design
language to generate new custom solutions quickly and eas-
ily. The design language enables customers and partners of
the company to develop new partial solutions and sell them
in the component shop of the software company. The soft-
ware vendor is changing from a SECO follower to an SECO
leader. In this research we are determining what the success
factors are for such a component store and what other ac-
tivities are required to get participants in the SECO to start
building with the design language.

3. Software Supply Network Level

A Software Supply Network (SSN) is a series of linked
software, hardware, and service organizations cooperating
to satisfy market demands [5]. At the software supply net-
work level software vendors must consider how to deal
with first-tier buyers and suppliers and in many cases even
their buyers and suppliers (second-tier to n-tier). The chal-
lenges consist of strategically deciding who will belong to
the groups of buyers and suppliers, governance of relation-
ships with buyers and suppliers, and cross-organizational
quality assurance.

SSN Challenge 1 - Establishing relationships in a
SSN. Methods for partner contracting and relationship iden-
tification are required to further assist software vendors in
establishing and developing their own SSNs. Furthermore,
software vendors need to keep relationships with (potential)
buyers and suppliers alive. One way to do this is by using
different web portals for end-users, suppliers, and (value-
adding) resellers. Other ways of doing this are by establish-

ing close relationships with partners by organizing meet-
ings, workshops, and events surrounding the technology
and business opportunities. Furthermore, policies must be
established on how software vendors present themselves to
potential buyers and suppliers in forums, at events, through
marketing channels, etc. These challenges affect the whole
software vendor’s organization, from marketing to support
and from management to development.

SSN Challenge 2 - Release heartbeat and release tim-
ing. When considering dependencies between components
developers want to have the newest software as soon as pos-
sible, so they can reuse the newest features. On the other
hand end-users demand stable systems with a clear return on
investment for upgrading. Research is required on factors
that determine the optimal functionality release moment for
software vendors and all participants in a SSN.

SSN Challenge 3 - Managing quality in the SSN. An
interesting development is that software vendors require
their plug-in developers to maintain certain quality levels
to deserve an approved status [7]. After all, customer ap-
proval of a software product or service are dependent on
the experiences with both the plug-ins and the main product
or service. Several challenges are faced when establishing
such guidelines, since quality standards can easily become
too rigid for plug-in developers. The freedom of a plug-in
developer is of course dependent on how strongly the devel-
oper is locked-in with the SECO leader.

Example: Breaking Open the Business Model - A tradi-
tional Dutch software company has recently released a new
version of their software. Their product, a building design
application, is currently monolithic and delivered on a CD-
ROM to customers. The software company is presently ex-
ploring options for turning its product or parts of its product
into services and components, to be sold separately. If suc-
cessful, the software vendor can function as an example in
its relatively traditional market.

Example: Outsourcing Governance - Types of develop-
ment outsourcing relationships are established by the spe-
cific needs of a company. These needs depend on clar-
ity of the concepts and requirements that must be devel-
oped, recurrence of development tasks, and size and strate-
gic strength of buyers. In this research we attempt to de-
velop a method for outsourcing governance, such that an
organization wishing to outsource a development task can
use the method to establish and govern relationships.

Example: Leveraging the Ecosystem - Recently a Dutch
software vendor has opened up its business model, in that
the software vendor has enabled partners to build compo-
nents and plug-ins for their product. A study that is going
to be conducted is how the knowledge infrastructure is de-
signed to share knowledge with those partners and how in-
terfaces are opened up to these partners. Some objects of
the study are the knowledge infrastructure, the vibrance of

the SECO, the interfaces and openness of the software, and
the plug-in builders.

4. Software Vendor Level

A software vendor is an organizational entity that de-
signs, builds, and releases software functionality within a
SECO. The aim of a software vendor is to maximize profits
by selling software and possibly related services. Software
vendors build software functionality. Software functionality
is any collection of functions that represent business value
for a software end-user. Software developers are increas-
ingly separating functionality from the method in which
the functionality is distributed, i.e., software functionality is
built to be run independently, to be embedded as a compo-
nent, and to be published as a service. This enables software
vendors to distribute their functionality through services,
products, components, and libraries to different customers.
The separation of functionality and distribution method en-
ables software developers to avoid the stigma of being either
a product software vendor or a service provider [2]. Further-
more, the separation allows vendors to quickly change their
main distribution methods, as determined by their strate-
gic planning in regards to the SECO. Software vendors are
faced with the challenges of portfolio and product line plan-
ning, knowledge management, architecting for extensibil-
ity, and integration of development support systems across
different products and services.

Software Vendor Challenge 1 - Portfolio and Prod-
uct Line planning. Software vendors need to decide in
which configuration new functionality will be released (re-
lease and portfolio planning) and how much this function-
ality is worth. Software vendors must develop a strategy
for how independent product development departments de-
velop and release their software in unison. Furthermore,
software vendors must constantly reconsider their standards
in regards to software reuse and make-or-buy decisions.

Software Vendor Challenge 2 - Knowledge Manage-
ment. A vendor needs to decide how much information
shall be shared with other participants in the SSN, how
open interfaces will be, what types of software feedback
will be shared within the SSN, and how software will be
made available to new participants. The vendor also needs
to determine how much knowledge and software from the
SECO will be reused, such as open source software func-
tionality. Software vendors must establish clear guidelines
for developers on the types of software and licenses that can
be reused. These guidelines can counter the pragmatic na-
ture of software reuse [4]. Another area of knowledge man-
agement is the use of software operation knowledge, which
is using software performance, usage and feedback data
to support the software development and maintenance pro-
cesses [9]. Current challenges in this area are mining soft-

ware feedback data, visualizing information derived from
feedback data, and the determination of processes for which
feedback information can be used. Another interesting chal-
lenge in regards to knowledge management is the sharing of
bug reports: should a software vendor inform all parties in
the SECO of a bug?

Software Vendor Challenge 3 - Architecting for ex-
tensibility, portability, and variability. Architects are
not supported, as in other industries, by industry standards
that enable the software architect to use uniform interfaces.
Many challenges exist in this area: how flexible must the ar-
chitecture of software be? Can domain specific software de-
sign languages and standards be created? Can software be
developed once and then deployed on different platforms,
in different architectures, and in different configurations?

Software Vendor Challenge 4 - Development organi-
zation system integration. Developers of software func-
tionality must also consider the organizational context of
their functionality and keep into account systems that need
to interface with the functionality, such as licensing sys-
tems, content management systems, feedback systems, and
support systems. As these systems are opening up their in-
terfaces to the outside world, it becomes easier to interface
with these systems directly, enabling automatic content up-
dates, automatic feedback, automatic licensing and billing,
etc. In parallel, developers must keep into account that feed-
back can be returned from functionality as it operates in the
field [9]. Challenges in the software functionality context
concern the development of software product management
frameworks [8] and the development of feedback and devel-
opment cycle models.

Example: Requirements Engineering in a vibrant
ecosystem - Another project includes the study of the
requirements prioritization process at the aforementioned
Dutch software vendor, now that new participants can de-
velop domain specific plug-ins that the software vendor
does not consider core business. We are planning to study
the way in which these requirements are communicated
in the ecosystem and how these are picked up and imple-
mented by partners.

Example: Architecting for Extensibility - As software
vendors are opening up their interfaces and architectures,
the decision needs to be made on how open architectures
must be. Typically software vendors will only open up a
small part of the architecture to protect intellectual prop-
erty and to remain able to evolve the software without it be-
coming a maintenance nightmare. For this research several
application program interfaces will be studied to establish
architectural decisions made in regards to the SSN.

Example: Generating Feedback - Profiling software be-
havior in the field is frequently an afterthought for software
developers. We are currently developing a software behav-
ior logging tool, that applies aspect oriented programming

techniques to easily weave logging code into any type of
software product or service. The use of such tools enables
software vendors to respond quickly to changes to a product
or service in the field. Furthermore, a software vendor can
monitor ongoing software usage in real-time [9].

5. Research Directions

We classify this research as empirical software engineer-
ing. Most of the challenges addressed in this paper are of
a technical or business nature. Several economical issues
are still open, such as a comprehensive comparison between
traditional supply networks and software supply networks
and surveys of large numbers of software related businesses
and their financial results compared against their respective
SECOs. Furthermore, more research must be done on con-
cepts that can be copied from law, economics, and biology.
We wish to gain support from colleagues in different fields
to do interdisciplinary research.

References

[1] S. Brinkkemper, I. van Soest, and S. Jansen. Modeling of
product software businesses: Investigation into industry prod-
uct and channel typologies. In proceedings of the Sixteenth In-
ternational Conference on Information Systems Development,
pages 677-686. Springer-verlag, 2007.

[2] M. A. Cusumano. The changing software business: Moving
from products to services. IEEE Comp., 41(1):20-27, 2008.

[3] B. Farbey and A. Finkelstein. Exploiting software supply
chain business architecture: a research agenda. In proceed-
ings of the 1st Workshop on Economics-Driven Software En-
gineering Research (EDSER-1), 1999.

[4] S. Jansen, S. Brinkkemper, I. Hunink, and C. Demir. Prag-
matic and opportunistic reuse in two innovative start-up com-
panies. IEEE Software, November/December, 2008.

[5] S. Jansen, A. Finkelstein, and S. Brinkkemper. Providing
transparency in the business of software: A modelling tech-
nique for software supply networks. In In Proceedings of the
8th IFIP Working Conference on Virtual Enterprises, pages
677-686, 2007.

[6] D. G. Messerschmitt and C. Szyperski. Software Ecosys-
tem: Understanding an Indispensable Technology and Indus-
try. MIT Press, Cambridge, MA, USA, 2003.

[7] D. Postmus and T. D. Meijler. Aligning the economic mod-
eling of software reuse with reuse practices. Infor. Software
Technology, 50(7-8):753-762, 2008.

[8] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis,
J. Versendaal, and L. Bijlsma. Towards a reference frame-
work for software product management. pages 319-322, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[9] H. van der Schuur, S. Jansen, and S. Brinkkemper. Becoming
responsive to service usage and performance changes by ap-
plying service feedback metrics to software maintenance. In
4th Intl. ERCIM Workshop on Software Evolution and Evolv-
ability, 2008.

