
The Compliance Testing of Software Tools

with respect to the UML standards specification

- the ArgoUML case study

Panuchart Bunyakiati and Anthony Finkelstein

Dept. of Computer Science

University College London

London WC1E 6BT

United Kingdom

Email: p.bunyakiati@cs.ucl.ac.uk, a.finkelstein@cs.ucl.ac.uk

Abstract

In ICSE’08 we demonstrated the Java UML

Lightweight Enumerator (JULE) tool, which supports

compliance test generation from modeling standards

specifications. When employed in our framework for

software tool certification, JULE provides a powerful

technology to enumerate a set of test cases that

exhaustively test a modeling tool. JULE avoids

combinatorial explosion by generating test cases only

up to non-isomorphism. In this paper, a case study

presented is an experiment on the use of a test suite

generated from JULE to assess the compliance of an

open source software tool - ArgoUML. This case study

illustrates how ArgoUML is tested and reveals some

previously unknown non-compliance issues. The case

study highlights how software modeling tools can be

tested for standards compliance and how test results

can be analyzed to diagnose the causes of non-

compliance in a software tool.

1. Compliance test generation with JULE

The Java UML Lightweight Enumerator (JULE) [4]

tool provides automated support for compliance test

generation focusing on the model analysis operations

of software modeling tools with respect to the static

semantics part of modeling language specifications.

This case study describes compliance testing of

ArgoUML against the Unified Modeling Language

(UML) specification [14] and the Object Constraint

Language (OCL) [15] well-formedness rules.

Compliance testing for software modeling tools is

limited to experiments on the models upon which the

software tools operate, to determine whether the

models’ conditions of compliance are maintained by

the tools. The certification framework uses UML

models as the test inputs for its approach based on

bounded exhaustive-testing [18], the technique in

which software is tested with all valid inputs up to a

specified bound on the input size, and pseudo-

exhaustive testing [13] where abstraction methods such

as equivalence class are used to select test inputs.

From the UML metamodel and OCL well-

formedness rules, the JULE tool enumerates a set of

UML models up to non-isomorphism using the model

generating technique described in [3]. Each member of

this set is an exemplar of an equivalence class of

models, within which structure is preserved but model

element identities vary. Since OCL well-formedness

rules are defined at the metamodel level, individual

model element identities are not relevant.

2. Testing framework

In a compliance test suite, each test case is a pair

consisting of a UML model and its condition of

compliance (expected test result) that indicates whether

the application satisfies or violates a particular well-

formedness rule. This compliance test suite is

classified into two categories of test data,

demonstrations and counterexamples. The

demonstrations are the set of valid models. They exist

to detect the false-positive problems to ensure that the

tools do not reject correct models. The

counterexamples are the set of invalid models. They

detect the false-negative problems in which the tools

accept incorrect models. Fully compliant tools must

accept all demonstrations and reject all

counterexamples and testing a tool based on single

examples from each equivalence class should reveal

the majority of compliance errors.

To execute a test case, the software tool creates the

test model and verifies it. The verification result is then

compared with the expected test result to conclude a

pass/fail compliance test result.

3. How JULE works

Test generation is performed by the four

components of JULE: the OCL translator for

processing OCL statements; the combinatorial package

for generating the test data; Crocopat [2], a tool for

relational computation based on Binary Decision

Diagrams (BDDs), for creating expected test output;

and JUnit [11] generator for producing test programs in

Java.

Given an OCL well-formedness rule, JULE parses

the well-formedness rule, constructs a test data

specification for generating test and creates a

Relational Manipulation Language (RML) [2] program

for producing test oracle. A test data specification is a

part of the UML metamodel and the number of objects

for the metamodel types present. With this

specification, JULE employs its combinatorial package

to enumerate a set of non-isomorphic test cases, each

of which is then submitted to Crocopat together with

the RML program. The result returned is an expected

test result which indicates whether the test case is a

demonstration or a counterexample. Each pair of a test

and an expected test result is concretized as a test in

JUnit using the JUnit generator.

4. ArgoUML

ArgoUML [1] is a major open source UML

modeling tool that supports the UML 1.4 standards

specification and is available under the BSD license.

This allows commercial tools such as Poseidon for

UML [9] and MyEclipse UML [6] to extend from this

open source project. The feature list of ArgoUML

states that “ArgoUML is compliant with the OMG

Standard for UML 1.4. The core model repository is an

implementation of the Java Metadata Interface (JMI)

which directly supports Meta Object Facility (MOF)

and uses the machine readable version of the UML 1.4

specification provided by the OMG.”

ArgoUML employs two methods for analyzing

design models, first the design critics which analyze

the models, suggest design improvements and indicate

syntax and well-formedness errors and second, the

preventive approach by embedding the well-

formedness rule in methods for building a new model

element. Before adding a new model element to the

model, a build method is invoked to check whether the

given parameters for building the new element are

consistent with their relevant well-formedness rules. If

the parameters are inconsistent with the rules, the

method throws an exception indicating the problems.

The source code was checked out from the ArgoUML

repository at http://argouml.tigris.org/svn/argouml/

from release VERSION-0-26-ALPHA-1. Testing was

conducted in the package org.argouml.model.mdr in

the class CoreFactoryMDRImpl.java. The test cases

were executed on a Pentium IV 1.50 GHz machine

with memory 512 MB using JUnit3 in Eclipse 3.2 as a

test runner. The sizes of the test suites range from 9 to

287 test cases. All tests were completed within 10

seconds and the test reports produced by JUnit give the

list of test cases that were passed, failed or unfinished

(errors). Using these reports the failures were identified

and the causes of failures in the implementation were

analyzed.

4.1 Non-compliance Issue I

The first experiment shows that even a short and

uncomplicated well-formedness rule can be

misinterpreted by programmers. The well-formedness

rule for the AssociationEnd metaelement constrains

that “the Classifier of an AssociationEnd cannot be an

Interface or a DataType if the association is navigable

away from that end.” The OCL expression of this rule

is shown below.

self.participant.oclIsKindOf (Interface) or

 self.participant.oclIsKingOf (DataType) implies

 self.association.connection->select(ae| ae <>

 self)->forAll(ae|ae.isNavigable = false)

Figure 1 the well-formedness rule for

AssociationEnd

We used JULE to generate test cases within a bound

to the input size of two AssociationEnds, one

Association, three Classifiers, an Interface and a

DataType. There were 27 test cases generated, 20 of

them are demonstrations and 7 are counterexamples.

Running these test cases in JUnit against ArgoUML

found 2 failures that were both demonstrations. One of

them was shown in figure 2 where the classifier of the

context object is DataType and in the other failed test

case, Interface. In both models, the other end of the

association is not navigable, compliant with this well-

formedness rule. However, ArgoUML reports that they

are ill-formed. The implementation is over-constrained.

By increasing the scope of the input size, the number

of test cases increased accordingly. An example of

these larger test cases is the one in figure 3. The test

results from the larger test suites were consistent with

those of the smaller ones.

Figure 2. a test case for AssociationEnd

Figure 3. another test case for AssociationEnd

at a larger scope

4.2 Diagnosis I

From the test results, a diagnosis can be made.

ArgoUML rejects models whenever an end of the

association has its participant of type either DataType

or Interface that is not navigable. By running these

failed test cases in Eclipse’s debug mode, this

diagnosis can be confirmed with the source code

shown in figure 4. When the value of the variable type

became an instance of DataType or Interface and the

value of the variable navigable was false, the exception

is thrown immediately. This confirms our initial

diagnosis. The code snippet in figure 4 below - line 1

and 2 shows the errorneous conditions. The

IllegalArgumentException was thrown from line 3-8.

1 if (type instanceof DataType || type instanceof Interface) {

2 if (!navigable) {

3 throw new IllegalArgumentException(

4 "Wellformedness rule 2.5.3.3 [1] is broken. "

5 +"The Classifier of an AssociationEnd cannot"

6 +"be an Interface or a DataType if the "

7 +"association is navigable away from "

8 +"that end.");

9 }

10 List<AssociationEnd> ends = new ArrayList<AssociationEnd>();

11 ends.addAll(((UmlAssociation) assoc).getConnection());

12 for (AssociationEnd end : ends) {

13 if (end.isNavigable()) {

14 throw new IllegalArgumentException("type is either "

15 + "datatype or " + "interface and is "

16 + "navigable to");

17 }

18 }

19 }

Figure 4. code snippet from the

buildAssociationEnd method

4.3 Non-compliance Issue II

The next problem uncovered was the second well-

formedness rule applied to AssociationEnd. This rule

states that “an instance may not belong by composition

to more than one composite instance.” The OCL

statement of this well-formedness rule is shown in

figure 5.

self.aggregation = composite implies

self.multiplicity.upperbound = 1

Figure 5. another well-formedness rule for

AssociationEnd

For this rule, JULE generated only 9 test cases from

one AssociationEnd, three AggregationKinds -

Aggregate, Composite and None and three possible

integer values: 0, 1 and 2. Because these values

represent semantically different contexts, each

combination of these values (the values of

AggregationKinds and the integers) results in a

semantically different model. The number of test cases

is equivalent to the total number of Cartesian products

of the two sets (3 possible aggregationKinds ! 3

possible integers).

Testing ArgoUML with the 9 test cases reported 2

failures shown in figure 6(a) and 6(b). The two tests

are the association ends that are composite and have

upper bound 0 and 2 respectively. Clearly, both test

cases are counterexamples; however, they went

undetected.

Figure 6. two test cases for AssociationEnd

4.4 Diagnosis II

Running these two test cases in Eclipse’s debug

mode found a problem in line 3 of code in figure 7

which always returns false no matter what the value of

the variable multi is. Tracing to the getMaxUpper

method discovered a fault - this method always returns

0. This can be fixed easily by changing line 9 of the

code in figure 8 to return max and ArgoUML can

detect all counterexamples correctly.

1 if (aggregation != null

2 &&aggregation.equals(AggregationKindEnum.AK_COMPOSITE)

3 && multi != null && getMaxUpper((Multiplicity) multi) > 1) {

4 throw new IllegalArgumentException("aggregation is composite "

5 + "and multiplicity > 1");

6 }

Figure 7. code snippet for the

buildAssociationEnd method

1 private int getMaxUpper(Multiplicity m) {

2 int max = 0;

3 for (MultiplicityRange mr : m.getRange()) {

4 int value = mr.getUpper();

5 if (value > max) {

6 max = value;

7 }

8 }

9 return 0;

10 }

Figure 8. the getMaxUpper method

4.5 Non-complaince Issue III

The next issue was one of the rules that constrain

the semantics of Generalization. This rule simply states

that “Circular inheritance is not allowed.” The OCL of

this well-formedness rule is shown in figure 9. This

rule excludes the self element from being in one of its

allParents.

not self.allParents->includes(self)

Figure 9. a well-formedness rule for

GeneralizableElement

The four test cases shown in figure 10 are

counterexamples where self was involved, at some

point, in circular inheritance. In the first model in

figure 10(a), self is a child of itself. In the model in

figure 10(b), self has a parent that is a child of itself

through a generalizable element. In figure 10(c) and

10(d), self is a grandparent and great-grandparent of

itself. All these models are invalid; however,

ArgoUML can only detect the cases of circular

inheritance in figure 10(b).

Figure 10. test cases for

GeneralizableElement

4.6 Diagnosis III

The buildGeneralization method is shown in figure

11. The condition in line 5 should be “==” instead of

“!=” - only when a child and its parent are the same

object should the method throw an exception, not

otherwise. The code in line 5 therefore can be changed

to “|| (child1 == parent1)”

1 if((

2 !(child1 instanceof GeneralizableElement) ||

3 !(parent1 instanceof GeneralizableElement)

4)

5 && child1 != parent1

6){

7 throw new IllegalArgumentException(

8 "Both items must be different generalizable elements");

9 }

Figure 11. code snippet from the

buildGeneralization method

Next, consider the cases in figure 10(c) and 10(d),

the grandchild and great grandchild circular

inheritances. The code that handled these non-

compliance issues was implemented in another part of

the buildGeneralization method as shown in figure 12.

1 for (Generalization gen : parent.getGeneralization()) {

2 if (gen.getParent().equals(child)) {

3 throw new IllegalArgumentException("Generalization exists"

4 + " in opposite direction");

5 }

6 }

Figure 12. another part of code snippet from

the buildGeneralization method

In line 1 of the code in figure 12, the body of the

loop,

Generalization gen : parent.getGeneralization(),

takes all generalizations of the parent object. This is

however incomplete, self.allParents is not limited to

only the parents of the object from which it directly

inherits, but according to the UML standards

specification,

“the operation allParents returns a set containing

all the generalizable elements inherited by this

generalizable element (the transitive closure),

excluding the GeneralizableElement itself.”

The implementation in the buildGeneralization

method deviates from this statement; this

implementation only expresses the OCL below, but not

equivalent to the original statement.

not self.parent.parents->includes(self)

Figure 13. a deviated well-formedness rule for

GeneralizableElement

It was pointed out that circular generalization could

be handled by one of the critics instead of by the build

method. We tested ArgoUML with the model in figure

10(c) and 10(d) and found that there is a critic

reporting problems in these models. With the

previously mentioned correction, ArgoUML can deal

with all four cases of circular inheritance correctly. It is

then compliant with this well-formedness rule.

5. Related works

Farchi et al. [7] demonstrate test suite generation for

parts of the POSIX standard and for the Java exception

handling specification. Their method derives

behavioral models from standards specifications. In

contrast, JULE focuses on the static semantics part of

modeling language specifications.

TestEra [12] uses a SAT solver in the Alloy

Analyzer [10] to enumerate test models for checking

the correctness of tools such as the fault-tree analyzer

Galileo [5]. JULE limits its test generation differently

and uses Binary Decision Diagrams (BDDs)

implemented in Crocopat to check for model

satisfactions.

6. Lessons learned

It is shown that black-box, bounded exhaustive

testing using both demonstrations and counterexamples

is a sound approach for compliance assessment for a

software modeling tool. Some non-compliance issues

can be detected by demonstrations and some by

counterexamples. It can be said that this approach

builds up the proof of compliance, within a boundary,

using the proof-by-cases technique [16] where a proof

is constructed on a case-by-case basis until all required

cases are proved. Because test generation is bounded

by the input size, it is up to the test engineers to decide

when to stop the test.

As a general observation, we note that the approach

of translating these well-formedness rules to Java code

seems prone to error. It is possible that developers may

misunderstand the well-formedness rules and

implement them in Java incorrectly. Also, semantic

variation points in the UML specification allow

variations of model interpretation to support a variety

of application domains. A more effective approach

might be to implement a model validator that directly

operates from OCL, as we have a formal semantics of

this language. One implementation based on this

approach is UCLUML [17].

7. Conclusion and future work

In this paper, we set out to test the feasibility of

using the framework for software tool certification to a

realistic software tool. The basis of this evaluation was

an experiment on applying a test suite generated from

JULE to the ArgoUML modeling tool. The results

reveal three previously unknown faults in ArgoUML.

The first issue was corrected by the ArgoUML team

and removed from the current source code (revision

16250). We have reported the remaining issues to the

ArgoUML development team. These issues have been

corrected in revision 16693.

Because JULE supports test generation for

modeling languages defined using EMOF/OCL, this, in

principle, allows test generation for UML 1.4.2 as well

as UML 2.x. We chose to experiment with UML 1.4.2

because it is recognized as an ISO standard - ISO/IEC

19501 and because of the availability of supporting

modeling tools e.g. ArgoUML itself. The same

principle applies for other domain specific languages

(DSLs). For example, the Architecture Analysis &

Design Language (AADL) [8] may be represented as a

UML profile from which JULE may generate test

directly.

As an immediate future work, we will also

experiment this framework with commercial, non-open

source tools to realize the impact of the unavailability

of source code on the diagnosis of non-compliance

issues.

8. Acknowledgement

The authors would like to thank Tom Morris from

the ArgoUML team for his constructive feedback,

James Skene for his contributions to the development

of JULE and Andy Maule for his helpful suggestions.

9. References

[1] ArgoUML. Argouml. http://argouml.tigris.org/, 2005.

[2] D. Beyer. Relational programming with crocopat. In ICSE ’06:
Proceedings of the 28th ICSE, pages 807-810, New York, NY,
USA, 2006. ACM.

[3] P. Bunyakiati, A. Finkelstein, and D. Rosenblum. The
certification of software tools with respect to software
standards. In IRI, pages 724–729. IEEE Systems, Man, and
Cybernetics Society, 2007.

[4] P. Bunyakiati, A. Finkelstein, J. Skene, and C. Chapman. Using
jule to generate a compliance test suite for the uml standard. In
ICSE’08: Proc. of the 30th ICSE, pages 827–830, New York,
NY, USA, 2008. ACM.

[5] D. Coppit and K. J. Sullivan. Galileo: A tool built from mass-
market applications. In Proceedings of the 22nd ICSE, pages
750-3, Limerick, Ireland, 4-11 June 2000. IEEE.

[6] The Eclipse Project. The eclipse modelling framework (emf).
http://www.eclipse.org/emf/.

[7] E. Farchi, A. Hartman, and S. S. Pinter. Using a model-based
test generator to test for standard conformance. IBM Systems
Journal, 41(1):89-110, 2002.

[8] P. Feiler, D. Gluch, J. Hudak, The Architecture Analysis &
Design Language: An Introduction", SEI, Technical Note
CMU/SEI-2006-TN-011

[9] Gentleware A. B. Poseidon uml editor.
http://www.gentleware.com/.

[10] D. Jackson, Software Abstractions: Logic, Language and
Analysis. MIT Press. Cambridge, MA.

[11] JUnit, November 2007, DOI=http://www.junit.org/

[12] Khurshid, S. and Marinov, D. TestEra: Specification-Based
Testing of Java Programs Using SAT. Automated Software
Engg. 11, 4 (Oct. 2004), 403-434.

[13] D. R. Kuhn and V. Okum. Pseudo-exhaustive testing for
software. Proc. 30th NASA/IEEE Software Eng. Workshop,
2006, pages 153–158.

[14] Object Management Group. OMG Unified Modeling
Language, Version 1.4. OMG, http://www.omg.com/uml/,
2001.

[15] Object Management Group. UML 2.0 Object Constraint
Language (OCL) Specification. Object Management Group,
2003. http://www.omg.org/docs/ptc/03-10-14.pdf.

[16] M. Pezze, M. Young, Software Testing and Analysis: Process,
Principles and Techniques, Wiley, 2007.

[17] J. Skene. The ucl mda tools.

http://uclmda.sourceforge.net/index.html, 2007.

[18] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson.
Software assurance by bounded exhaustive testing. IEEE
Transactions on Software Engineering, VOL. 31, NO. 4,
APRIL 2005 pages 133–142, 2004.

