
Software Engineering for Self-Adaptive Systems:
A Research Roadmap

Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,
and Jeff Magee

(Dagstuhl Seminar Organizer Authors)

Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar,

Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi,
Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek,

Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle

(Dagstuhl Seminar Participant Authors)

r.delemos@kent.ac.uk, holger.giese@hpi.uni-potsdam.de

Abstract. The goal of this roadmap paper is to summarize the state-of-
the-art and to identify critical challenges for the systematic software engi-
neering of self-adaptive systems. The paper is partitioned into four parts,
one for each of the identified essential views of self-adaptation: modelling
dimensions, requirements, engineering, and assurances. For each view, we
present the state-of-the-art and the challenges that our community must
address. This roadmap paper is a result of the Dagstuhl Seminar 08031
on “Software Engineering for Self-Adaptive Systems,” which took place
in January 2008.

1 Introduction

The simultaneous explosion of information, the integration of technology, and
the continuous evolution from software-intensive systems to ultra-large-scale
(ULS) systems require new and innovative approaches for building, running,
and managing software systems [1]. A consequence of this continuous evolu-
tion is that software systems must become more versatile, flexible, resilient, de-
pendable, robust, energy-efficient, recoverable, customizable, configurable, and
self-optimizing by adapting to changing operational contexts, environments or
system characteristics. Therefore, self-adaptation - systems that are able to ad-
just their behaviour in response to their perception of the environment and the
system itself – has become an important research topic.

It is important to emphasize that in all the many initiatives to explore
self-adaptive behaviour, the common element that enables the provision of self-
adaptability is usually software. This applies to the research in several ap-
plication areas and technologies such as adaptable user interfaces, autonomic

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 1–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 B.H.C. Cheng et al.

computing, dependable computing, embedded systems, mobile ad hoc networks,
mobile and autonomous robots, multi-agent systems, peer-to-peer applications,
sensor networks, service-oriented architectures, and ubiquitous computing. It
also hold for many research fields, which have already investigated some aspects
of self-adaptation from their own perspective, such as fault-tolerant computing,
distributed systems, biologically inspired computing, distributed artificial in-
telligence, integrated management, robotics, knowledge-based systems, machine
learning, control theory, etc. In all these case software’s flexibility allows such
heterogeneous applications; however, the proper realization of the self-adaptation
functionality still remains a significant intellectual challenge and only recently
have the first attempts in building self-adaptive systems emerged within specific
application domains. Moreover, little endeavour has been made to establish suit-
able software engineering approaches for the provision of self-adaptation. In the
long run, we need to establish the foundations that enable the systematic devel-
opment of future generations of self-adaptive systems. Therefore it is worthwhile
to identify the commonalities and differences of the results achieved so far in the
different fields and look for ways to integrate them.

The goal of this roadmap paper is to summarize and point out the cur-
rent state-of-the-art and its limitations, as well as to identify critical challenges
for engineering self-adaptive software systems. Specifically, we intend to focus
on development methods, techniques, and tools that we believe are required
to support the systematic development of complex software systems with dy-
namic self-adaptive behaviour. In contrast to merely speculative and conjectural
visions and ad hoc approaches for systems supporting self-adaptability, the ob-
jective of this paper is to establish a roadmap for research, and to identify the
main research challenges for the systematic software engineering of self-adaptive
systems.

To present and motivate these challenges, the paper divided into four parts,
one for each of the four essential views of self-adaptation we have identified.
For each view, we present the state-of-the-art and the challenges our community
must address. The four views are: modelling dimensions (Section 2), require-
ments (Section 3), engineering (Section 4), and assurances (Section 5). Finally,
we summarize our findings in Section 6.

2 Modelling Dimensions

Endowing a system with a self-adaptive property can take many different shapes.
The way self-adaptation has to be conceived depends on various aspects, such
as, user needs, environment characteristics, and other system properties. Under-
standing the problem and selecting a suitable solution requires precise models
for representing important aspects of the self-adaptive system, its users, and
its environment. A cursory review of the software engineering literature attests
to the wide spectrum of software systems that are argued to be self-adaptive.
Indeed, there is a lack of consensus among researchers and practitioners on the
points of variation among such software systems. We refer to these points of
variations as modelling dimensions.



Software Engineering for Self-Adaptive Systems: A Research Roadmap 3

In this section, we provide a classification of modelling dimensions for self-
adaptive systems. Each dimension describes a particular aspect of the system
that is relevant for self-adaptation. Note that it is not our ambition to be ex-
haustive in all possible dimensions, but rather to give an initial impetus towards
defining a framework for modelling self-adaptive systems. The purpose is to es-
tablish a baseline from which key aspects of different self-adaptive system can
be easily identified and compared. A more elaborated discussion of the ideas
presented in this section can be found in [2].

In the following, we present the dimensions in term of four groups. First, the
dimensions associated with self-adaptability aspects of the system goals, second,
the dimensions associated with causes of self-adaptation, third, the dimensions
associated with the mechanisms to achieve self-adaptability, and fourth, the di-
mensions related to the effects of self-adaptability upon a system. The proposed
modelling framework is presented in the context of an illustrative case from
the class of embedded systems, however, these dimensions can be equally useful
in describing the self-adaptation properties, for example, of an IT change
management system.

2.1 Illustrative Case

As an illustrative scenario, we consider the problem of obstacle/vehicle collisions
in the domain of unmanned vehicles (UVs). A concrete application could be the
DARPA Grand Challenge contest [3]. Each UV is provided with an autonomous
control software system (ACS) to drive the vehicle from start to destination along
the road network. The ACS takes into account the regular traffic environment,
including the traffic infrastructure and other vehicles. The scenario we envision
is the one in which there is a UV driving on the road through a region where
people and animals can cross the road unexpectedly. To anticipate possible col-
lisions, the ACS is extended with a self-adaptive control system (SCS). The SCS
monitors the environment and controls the vehicle when a human being or an
animal is detected in front of the vehicle. In case an obstacle is detected, the
SCS manoeuvres the UV around the obstacle negotiating other obstacles and
vehicles. Thus, the SCS extends the ACS with self-adaptation to avoid collisions
with obstacles on the road.

2.2 Overview of Modelling Dimensions

We give overview of the important modelling dimensions per group. Each
dimension is illustrated with an example from the illustrative case.

Goals. Goals are objectives the system under consideration should achieve.
Goals could either be associated with the lifetime of the system or with scenarios
that are related to the system. Moreover, goals can either refer to the self-
adaptability aspects of the application, or to the middleware or infrastructure
that supports that application. In the context of the case study mentioned above,
amongst several possible goals, we consider, as an example, the following goal:



4 B.H.C. Cheng et al.

the system shall avoid collisions. This goal could be expressed in a way in which
quantities are associated with the different attributes, and partitioned into sub-
goals, with each sub-goal related to one of the attributes.

Evolution. This dimension captures whether the goals can change within the
lifetime of the system. The number of goals may change, and the goals themselves
may also change as the system as a whole evolves. Hence, goal evolution ranges
from static in which changes are not expected, to dynamic in which goals can
change at run-time, including the number of goals, i.e., the system is able to
manage and create new goals during its lifetime. In the context of the case study
since the goal is related to the safety of the UVs it is expected for the goal to
be static.

Flexibility. This dimension captures whether the goals are flexible in the way
they are expressed. This dimension is related to the level of uncertainty as-
sociated with the goal specification, which may range over three values: rigid,
constrained, and unconstrained. A goal is rigid when it is prescriptive, while
a goal is unconstrained when its statement provides flexibility for dealing with
uncertainty. An example of a rigid goal is “the system shall do this. . . ” while
an unconstrained goal is “the system might do this. . . ” A constrained goal pro-
vides a middle ground, where there is flexibility as long as certain constraints
are satisfied, such as, “the system may do this. . . as long as it does this. . . ” In
the context of the case study, the goal is rigid.

Duration. This dimension is concerned with the validity of a goal throughout the
system’s lifetime. It may range from temporary to persistent. While a persistent
goal should be valid throughout the system’s lifetime, a temporary goal may
be valid for a period of time: short, medium and long term. A persistent goal
may restrict the adaptability of the system because it may constrain the system
flexibility in adapting to change. A goal that is associated with a particular
scenario can be considered a temporary goal. In terms of duration, the goal of
the illustrative case can be considered persistent since it is related to the purpose
of the system.

Multiplicity. This dimension is related to the number of goals associated with the
self-adaptability aspects of a system. A system can either have a single goal or
multiple goals. As a general rule of thumb, a single goal self-adaptive system is
relatively easier to realize than systems with multiple goals. As discussed in the
next dimension, this is particularly true for system where the goals are related.
The illustrative case is presented in the context of a single goal.

Dependency. In case a system has multiple goals, this dimension captures how
the goals are related to each other. They can be either independent or dependent.
A system can have several independent goals (i.e., they don’t affect each other).
When the goals are dependent, goals can either be complementary with respect
to the objectives that should be achieved or they can be conflicting. In the latter



Software Engineering for Self-Adaptive Systems: A Research Roadmap 5

case, trade offs have to be analyzed for identifying an optimal configuration of
the goals to be met. In the illustrative case study there are no dependencies since
there is a single goal.

Change. Changes are the cause of adaptation. Whenever the system’s context
changes the system has to decide whether it needs to adapt. In line with [4],
we consider context as any information which is computationally accessible and
upon which behavioural variations depend. Actors (entities that interact with
the system), the environment (the part of the external world with which the sys-
tem interacts [5]), and the system itself may contribute to the context that may
influence the behaviour of the application. Actor-dependent, system-dependent,
and environment-dependent variations can occur separately, or in any combina-
tion. We classify context-dependable changes of a self-adaptive system in terms
of the place in which change has occurred, the type and the frequency of the
change, and whether it can be anticipated. All these elements are important for
identifying how the system should react to change that occurs during run-time.
In the context of the illustrative case study, we consider the cause of adaptation
the appearance of an obstacle in front of the ACS.

Source. This dimension identifies the origin of the change, which can be either
external to the system (i.e., its environment) or internal to the system, depending
on the scope of the system. In case the source of change is internal, it might be
important to identify more precisely where change has occurred: application,
middleware or infrastructure. The source of the change related to the ACS is
external to the system.

Type. This dimension refers to the nature of change. It can be functional, non-
functional, and technological. Technological refers to both software and hardware
aspects that support the delivery of the services. Examples of the three types
of change are, respectively: the purpose of the system has changed and services
delivered need to reflect this change, system performance and reliability need to
be improved, and the version of the middleware in which the application runs
has been upgraded. In the illustrative case, since the change can lead ACS to
collide against an obstacle the type of change is non-functional.

Frequency. This dimension is concerned with how often a particular change oc-
curs, and it can range from rare to frequent. If for example a change happens
quite often this might affect the responsiveness of the adaptation. Since the oc-
currence of obstacles is rare within the system lifetime, we consider changes are
rare to occur.

Anticipation. This dimension captures whether change can be predicted ahead of
time. Different self-adaptive techniques are necessary depending on the degree of
anticipation: foreseen (taken care of), foreseeable (planned for), and unforeseen
(not planned for) [6]. In the illustrative case study, the occurrence of obstacles
should be foreseeable.



6 B.H.C. Cheng et al.

Mechanisms. This set of dimensions captures the system reaction towards
change, which means that they are related to the adaptation process itself. The
dimensions associated with this group refer to the type of self-adaptation that
is expected, the level of autonomy of the self-adaptation, how self-adaptation
is controlled, the impact of self-adaptation in terms of space and time, how
responsive is self-adaptation, and how self-adaptation reacts to change.

Type. This dimension captures whether adaptation is related to the parameters
of the system’s components or to the structure of the system. Based on this,
adaptation can be parametric or structural, or a combination of these. Struc-
tural adaptation could also be seen as compositional, since it depends on how
components are integrated. In the illustrative case, to avoid collisions with ob-
stacles, the SCS has to adjust the movements of the UV, and this might imply
adjusting parameters in the steering gear.

Autonomy. This dimension identifies the degree of outside intervention during
adaptation. The range of this dimension goes from autonomous to assisted. In
the autonomous case, at run-time there is no influence external to the system
guiding how the system should adapt. On the other hand, a system can have
a degree of self-adaptability when externally assisted, either by another system
or by human participation (which can be considered another system). In the
illustrative case, for the foreseen type of changes the system is autonomous since
the UV has to avoid collisions with animals without any human intervention.

Organization. This dimension captures whether adaptation is performed by a
single component - centralized, or distributed amongst several components -
decentralized. If adaptation is decentralized no single component has a complete
control over the system. The SCS of the UV in the illustrative example seems
to fit naturally with a weak organization.

Scope. This dimension identifies whether adaptation is localized or involves the
entire system. The scope of adaptation can range from local to global. If adapta-
tion affects the entire system then more thorough analysis is required to commit
the adaptation. It is fundamental for the system to be well structured in order to
reduce the impact that change might have on the adaptation. In the illustrative
case, the adaptation is global to the UV since involves different components in
the car, such as, steering gear and brakes.

Duration. This dimension refers to the period of time in which the system is
self-adapting, or in other words, how long the adaptation lasts. The adaptation
process can be for short (seconds to hours), medium (hours to months), or long
(months to years) term. Note that time characteristics should be considered
relative to the application domain. While scope dimension deals with the impact
of adaptation in terms of space, duration deals with time. Considering that the
time it takes for the UV to react to an obstacle is minimal compared with the
lifetime of the system, the duration of the self-adaptation should be short term.



Software Engineering for Self-Adaptive Systems: A Research Roadmap 7

Timeliness. This dimension captures whether the time period for performing
self-adaptation can be guaranteed, and it ranges from best-effort to guaranteed.
For example, in case change occurs quite often, it may be the case that it is
impossible to guarantee that adaptation will take place before another change
occurs, in these situations best effort should be pursued. In the context of the
case study, the upper bounds for the SCS to manoeuvre the UV should be
identified for the timeliness associated with self-adaptation to be guaranteed.

Triggering. This dimension identifies whether the change that initiates adap-
tation is event-trigger or time-trigger. Although it is difficult to control how
and when change occurs, it is possible to control how and when the adaptation
should react to a certain change. If the time period for performing adaptation
has to be guaranteed, then an event-trigger might not provide the necessary
assurances when change is unbounded. Obstacles in the illustrative case appear
unexpectedly and as such triggering of self-adaptation is event-based.

Effects. This set of dimensions capture what is the impact of adaptation upon
the system, that is, it deals with the effects of adaptation. While mechanisms
for adaptation are properties associated with the adaptation, these dimensions
are properties associated with system in which the adaptation takes place. The
dimensions associated with this group refer to the criticality of the adaptation,
how predictable it is, what are the overheads associated with it, and whether the
system is resilient in the face of change. In the context of the illustrative case
study, a collision between an UV and an obstacle may ensue if the SCS fails.

Criticality. This dimension captures the impact upon the system in case the
self-adaptation fails. There are adaptations that harmless in the context of the
services provided by the system, while there are adaptations that might involve
the loss of life. The range of values associated with this criticality is harmless,
mission-critical, and safety-critical. The level of criticality of the application (and
the adaptation process) is safety-critical since it may lead to an accident.

Predictability. This dimension identifies whether the consequences of self-
adaptation can be predictable both in value and time. While timeliness is re-
lated to the adaptation mechanisms, predictability is associated with system.
Since predictability is associated with guarantees, the degree of predictabil-
ity can range from non-deterministic to deterministic. Given the nature of the
illustrative case, the predictability of the adaptation should be deterministic.

Overhead. This dimension captures the negative impact of system adaptation
upon the system’s performance. The overhead can range from insignificant to
system failure (e.g., thrashing). The latter will happen when the system ceases
to be able to deliver its services due to the high-overhead of running the self-
adaptation processes (monitoring, analyzer, planning, effecting processes). The



8 B.H.C. Cheng et al.

overheads associated with the SCS should be insignificant, otherwise the UV
might not be able to avoid the obstacle.

Resilience. This dimension is related to the persistence of service delivery that
can justifiably be trusted, when facing changes [6]. There are two issues that
need to be considered under this dimension: first, it is the ability of the system
to provide resilience, and second, it is the ability to justify the provided resilience.
The degree of resilience can range from resilient to vulnerable. In the context of
the illustrative case study, the system should be resilient.

2.3 Research Challenges in Modelling Dimensions

In spite of the many years of software engineering research, construction of
self-adaptive software systems has remained a very challenging task. While
substantial progress has been made in each of the discussed modelling dimen-
sions, there are several important research questions that are remaining, and
frame the future research in this area. We briefly elaborate on those below. The
discussion is structured in line with the four presented groups of modelling
dimensions.

Goals. A self-adaptive software system often needs to perform a trade-off
analysis between several potentially conflicting goals. Practical techniques for
specifying and generating utility functions, potentially based on the user’s re-
quirements, are needed. One promising direction is to use preferences that
compare situations under Pareto optimal conditions.

Change. Monitoring a system, especially when there are several different QoS
properties of interest, has an overhead. In fact, the amount of degradation in
QoS due to monitoring could outweigh the benefits of improvements in QoS to
adaptation. More research on lightweight monitoring techniques is needed.

Mechanisms. Researchers and practitioners have typically leveraged a single
tactic to realize adaptation based on the characteristics of the target application.
However, given the unique benefits of each approach, we believe a fruitful av-
enue of future research is a more comprehensive approach that leverages several
adaptation tactics simultaneously.

The application of the centralized control loop pattern to a large-scale soft-
ware system may suffer from scalability problems. There is a pressing need for
decentralized, but still manageable, efficient, and predictable techniques for con-
structing self-adaptive software systems. A major challenge is to accommodate
a systematic engineering approach that integrates both control-loop approaches
with decentralized agent inspired approaches.

Responsiveness is a crucial property in real-time software systems, hence the
need for adaptation models targeted for real-time systems that treat the duration
and overhead of adaptation as first class entities.



Software Engineering for Self-Adaptive Systems: A Research Roadmap 9

Effects. Predicting the exact behaviour of a software system due to run-time
changes is a challenging task. More advanced and predictive models of adapta-
tion are needed for systems that could fail to satisfy their requirements due to
side-effects of change.

In highly dynamic systems, such as mobile systems, where the environmen-
tal parameters change frequently, the overhead of adaptation due to frequent
changes in the system could be so high that the system ends up thrashing. The
trade-offs between the adaptation overhead and the accrued benefits of changing
the system needs to be taken into consideration for such systems.

3 Requirements

A self-adaptive system is able to modify its behaviour according to changes
in its environment. As such, a self-adaptive system must continuously monitor
changes in its context and react accordingly. But what aspects of the environment
should the self-adaptive system monitor? Clearly, the system cannot monitor
everything. And exactly what should the system do if it detects less than optimal
conditions in the environment? Presumably, the system still needs to maintain
a set of high-level goals that should be satisfied regardless of the environmental
conditions. But non-critical goals could well be relaxed, thus allowing the system
a degree of flexibility during or after adaptation.

These questions (and others) form the core considerations for building self-
adaptive systems. Requirements engineering is concerned with what a system
should do and within which constraints it must do it. Requirements engineering
for self-adaptive systems, therefore, must address what adaptations are possible
and what constrains how those adaptations are realized. In particular, ques-
tions to be addressed include: what aspects of the environment are relevant
for adaptation? Which requirements are allowed to vary or evolve at run-time,
and which must always be maintained? In short, requirements engineering for
self-adaptive systems must deal with uncertainty because the information about
future execution environments is incomplete, and therefore the requirements for
the behavior of the system may need to change (at run-time) in response to the
changing environment.

3.1 Requirements State-of-the-Art

Requirements engineering for self-adaptive systems appears to be a wide open
research area with only a limited number of approaches yet considered. Cheng
and Atlee [7] report on some previous work on specifying and verifying adaptive
software, and on run-time monitoring of requirements conformance [8,9]. They
also explain how preliminary work on personalized and customized software can
be applied to adaptive systems (e.g., [10,11]). In addition, some research ap-
proaches have successfully used goal models as a foundation for specifying the
autonomic behaviour [12] and requirements of adaptive systems [13].



10 B.H.C. Cheng et al.

One of the main challenges that self-adaptation poses is that when designing
a self-adaptive system, we cannot assume that all adaptations are known in ad-
vance — that is, we cannot anticipate requirements for the entire set of possible
environmental conditions and their respective adaptation specifications. For ex-
ample, if a system is to respond to cyber-attacks, one cannot possibly know all
attacks in advance since malicious actors develop new attack types all the time.

As a result, requirements for self-adaptive systems may involve degrees of
uncertainty or may necessarily be specified as “incomplete.” The requirements
specification therefore should cope with:

– the incomplete information about the environment and the resulting incom-
plete information about the respective behaviour that the system should
expose

– the evolution of the requirements at run-time

3.2 Research Challenges in Requirements

This subsection highlights a number of short-term and long-term research chal-
lenges for requirements engineering for self-adaptive systems. We start with
shorter-term challenges and progress to more visionary ideas. As far as the au-
thors are aware, there is little or no research currently underway to address these
challenges.

A New Requirements Language. Current languages for requirements en-
gineering are not well suited to dealing with uncertainty, which, as mentioned
above, is a key consideration for self-adaptive systems. We therefore propose
that richer requirements languages are needed. Few of the existing approaches
for requirements engineering provide this capability. In goal-modelling notations
such as KAOS [14] and i! [15], there is no explicit support for uncertainty or
adaptivity. Scenario-based notations generally do not explicitly support adapta-
tion either, although live sequence charts [16] have a notion of mandatory versus
potential behaviour that could possibly be used to specify adaptive systems. Of
course, the most common notation for specifying requirements in industry is still
natural language prose. Traditionally, requirements documents make statements
such as “the system shall do this. . . ” For self-adaptive systems, the prescriptive
notion of “shall” needs to be relaxed and could, for example, be replaced with
“the system may do this. . . or it may do that . . . ” or “if the system cannot do
this. . . then it should eventually do that. . . ” This idea leads to a new require-
ments vocabulary for self-adaptive systems that gives stakeholders the flexibility
to account for uncertainty in their requirements documents. For example:

Traditional RE:
– “The system shall do this. . .”
Adaptive RE:
– “The system might do this. . .”
– “But it may do this. . . as long as it does this. . .”



Software Engineering for Self-Adaptive Systems: A Research Roadmap 11

– “The system ought to do this. . . but if it cannot, it shall eventually do
this. . .”

Such a vocabulary would change the level of discourse in requirements from
prescriptive to flexible. There would need to be a clear definition of terms, of
course, as well as a composition calculus for defining how the terms relate to
each other and compose. Multimodal logic and perhaps new adaptation-oriented
logic [17] need to be developed to specify the semantics for what it means to have
the possibility of conditions [18,19]. There is also a relationship with variability
management mechanisms in software product lines [20], which also tackle built-
in flexibilities. However, at the requirements level, one ideally would capture
uncertainty at a more abstract level than simply enumerating alternatives. Some
preliminary results in defining a new adaptation requirements language along
these lines are being developed [21].

Mapping to Architecture. Given a new requirements language that explicitly
handles uncertainty, it will be necessary to provide systematic methods for refin-
ing models in this language down to specific architectures that support run-time
adaptation. A variety of technical options exist for implementing reconfigura-
bility at the architecture level, including component-based, aspect-oriented and
product-line based approaches, as well as combinations of these. Potentially,
there could be a large gap in expressiveness between a requirements language
that incorporates uncertainty and existing architecture structuring methods.
One can imagine, therefore, a semi-automated process for mapping to archi-
tecture where heuristics and/or patterns are used to suggest architectural units
corresponding to certain vocabulary terms in the requirements.

Managing Uncertainty. In general, once we start introducing uncertainty
into our software engineering processes, we must have a way of managing this
uncertainty and the inevitable complexity associated with handling so many
unknowns. Certain requirements will not change (i.e., invariants), whereas others
will permit a degree of flexibility. For example, a system cannot start out as a
transport robot and self-adapt into a robot chef [22]! Allowing uncertainty levels
when developing self-adaptive systems requires a trade-off between flexibility
and assurance such that the critical high-level goals of the application are always
met [23,24,25].

Requirements Reflection. As we said above, self-adaptation deals with re-
quirements that vary at run-time. Therefore it is important that requirements
lend themselves to be dynamically observed, i.e., during execution. Reflection
[26,27,28] enables a system to observe its own structure and behaviour. A rel-
evant research work is the ReqMon tools [29] which provides a requirements
monitoring framework, focusing on temporal properties to be maintained. Lever-
aging and extending beyond these complementary approaches, Finkelstein [22]
coins the term “requirements reflection” that would enable systems to be aware
of their own requirements at run-time. This capability would require an



12 B.H.C. Cheng et al.

appropriate model of the requirements to be available online. Such an idea brings
with it a host of interesting research questions, such as: Could a system dy-
namically observe its requirements? In other words, can we make requirements
run-time objects? Future work is needed to develop technologies to provide such
infrastructure support.

Online Goal Refinement. As in the case of design decisions that are eventu-
ally realized at run-time, new and more flexible requirement specifications like
the one suggested above would imply that the system should perform the RE
processes at run-time, e.g. goal-refinement [25].

Traceability from Requirements to Implementation. A constant chal-
lenge in all the topics shown above is dynamic traceability. For example, new
operators of a new RE specification language should be easily traceable down to
architecture, design, and beyond. Furthermore, if the RE process is performed
at run-time we need to assure that the final implementation or behaviour of
the system matches the requirements. Doing so is different from the traditional
requirements traceability.

The above research challenges the requirements engineering (RE) commu-
nity will face, as the demand for self-adaptive systems continues to grow, span
RE activities during the development phases and run-time. In order to gain as-
surance about adaptive behaviour, it is important to monitor adherence and
traceability to the requirements during run-time. Furthermore, it is also nec-
essary to acknowledge and support the evolution of requirements at run-time.
Given the increasing complexity of applications requiring run-time adaptation,
the software artefacts with which the developers manipulate and analyze must
be more abstract than source code. How can graphical models, formal specifica-
tions, policies, etc. be used as the basis for the evolutionary process of adaptive
systems versus source code, the traditional artefact that is manipulated once a
system has been deployed? How can we maintain traceability among relevant
artefacts, including the code? How can we maintain assurance constraints dur-
ing and after adaptation? How much should a system be allowed to adapt and
still maintain traceability to the original system? Clearly, the ability to dynam-
ically adapt systems at run-time is an exciting and powerful capability. The RE
community, among other software engineering disciplines, need to be proactive in
tackling these complex challenges in order to ensure that useful and safe adaptive
capabilities are provided to the adaptive systems developers.

4 Engineering

The engineering of self-adaptive software systems is a major challenge, especially
if predictability and cost-effectiveness are desired. However, in other areas of
engineering and nature there is a well-known, pervasive notion that could be
potentially applied to software systems as well: the notion of feedback.

The first mechanical system that regulated its speed automatically using
feedback was Watt’s steam engine that had a regulator implementing feedback



Software Engineering for Self-Adaptive Systems: A Research Roadmap 13

control principles. Also in nature plenty examples for positive and negative feed-
back can be found that help to regulate processes.

Even though control engineering [30,31] as well as feedback found in nature
are not targeting software systems, mining the rich experiences of these fields
and applying principles and findings to software-intensive adaptive systems is
a most worthwhile and promising avenue of research for self-adaptive systems.
We further strongly believe that self-adaptive systems must be based on this
feedback principle and we advocate in this section to focus on the ’control loop’
when engineering self-adaptive systems.

In this section we first examine the generic control loop and then analyze the
control loop’s role in control theory, natural systems, and software engineering,
respectively. Finally, we describe the challenges whose resolutions are necessary
to enable the systematic engineering of self-adaptive systems. A more detailed
elaboration of the perspective presented in this section can be found in [32].

4.1 Control Loop Model

Self-adaptation aspects of software-intensive systems can often be hidden within
the system design. What self-adaptive systems have in common is that (1) typi-
cally design decisions are partially made at run-time, and (2) the systems reason
about their state and environment. This reasoning typically involves feedback
processes with four key activities: collect, analyze, decide, and act, as depicted
in Figure 1 [33].

Here, we concentrate on self-adaptive systems with feedback mechanisms
controlling their dynamic behaviour. For example, keeping web services up and
running for a long time requires collecting of information about the current state
of the system, analyzing that information to diagnose performance problems
or to detect failures, deciding how to resolve the problem (e.g., via dynamic
load-balancing or healing), and acting on those decisions.

The generic model of a control loop based on [33] (cf. Figure 1) provides an
overview of the main activities around the control loop but ignores properties
of the control and data flow around the loop. When engineering a self-adaptive
system, questions about these properties become important. We now identify
such questions and argue that in order to properly design self-adaptive software
systems, these questions must be brought to the forefront of the design process.

The feedback cycle starts with the collection of relevant data from environ-
mental sensors and other sources that reflect the current state of the system.
Some of the engineering questions that Figure 1 ignores with respect to collec-
tion but that are important to the engineering process are: What is the required
sample rate? How reliable is the sensor data? Is there a common event format
across sensors?

Next, the system analyzes the collected data. There are many approaches
to structuring and reasoning about the raw data (e.g., using applicable models,
theories, and rules). Some of the important questions here are: How is the current
state of the system inferred? How much past state may be needed in the future?
What data need to be archived for validation and verification? How faithful is the



14 B.H.C. Cheng et al.

Fig. 1. Activities of the control loop

model to the real world? Can an adequate model be derived from the available
sensor data?

Next, the system makes a decision about how to adapt in order to reach
a desirable state. Approaches such as risk analysis can help make this decision.
Here, the important questions are: How is the future state of the system inferred?
How is a decision reached (e.g., with off-line simulation or utility/goal functions)?
What are the priorities for adaptation across multiple control loops and within
a single control loop?

Finally, to implement the decision, the system must act via available
actuators and effectors. Important questions here are: When should the adapta-
tion be safely performed? How do adjustments of different control loops inter-
fere with each other? Does centralized or decentralized control help achieve the
global goal? Does the control system have sufficient command authority over the
process—that is, can the action be implemented using the available actuators
and effectors?

The above questions—as well as others—regarding the control loop should
be explicitly identified, recorded, and resolved during the development of the
self-adaptive system.

4.2 Control Loops and Control Theory

The control loop is a central element of control theory, which provides well-
established mathematical models, tools, and techniques to analyze system per-
formance, stability, sensitivity, or correctness [34,35]. Researchers have applied
results of control theory and control engineering to building self-adaptive
systems. However, it is not clear if general principles of this discipline (e.g., open/
closed-loop controller, observability, controllability, stability, or hysteresis) are
applicable to self-adaptive software systems.



Software Engineering for Self-Adaptive Systems: A Research Roadmap 15

Control engineering has determined that systems with a single control loop
are easier to reason about than systems with multiple loops. Unfortunately, the
latter types of control loops are far more common. Good engineering practice
calls for reducing multiple control loops to a single one, or making control loops
independent of each other [36]. When such decoupling is impossible, the design
must make the interactions of control loops explicit and expose how these inter-
actions are handled.

Control engineering has also identified hierarchical organization of control
loops as a fruitful way to decouple control-loop interactions. The different time
scales of the different layers of the hierarchy can minimize the unexpected in-
terference between control loops. This scheme is of particular interest if we
distinguish between forms of adaptation such as change management and goal
management [25] and can organize them hierarchically.

While mining control engineering for control-loop mechanisms applicable to
software engineering can result in breakthroughs in engineering self-adaptive
systems, one important obstacle is that different application areas of control en-
gineering introduce distinct nomenclature and architectural diagrams for their
realizations of the generic control loop depicted in Figure 1. It is useful to in-
vestigate how different application areas realize this generic control loop and to
identify the commonalities in order to compare and leverage self-adaptive sys-
tems research from different application areas. For example, control engineering
has developed standard approaches to model and reason about feedback such as
the Model Reference Adaptive Control (MRAC) [31] and the Model Identifica-
tion Adaptive Control (MIAC) [37].

Models such as MRAC and MIAC introduce well-defined elements such as
controller, process, adjustment mechanism, and system identification or model
reference along with prescribed dependencies among these elements. This form
of separation of concerns suggests that these models are a solid starting point
for the design of self-adaptive software-intensive systems. In fact, many par-
ticipants of the Dagstuhl Seminar 08031 [38] presented self-adaptive systems
that can be expressed in terms of standardized models from control engineer-
ing such as MRAC and MIAC. Examples of presented systems include a
self-adaptive flight-control system that realizes a more robust aircraft control
capable of handling multiple faults (e.g., change of aircraft dynamics due to
loss of control surface, aileron, or stabilator) [39]; a system of autonomous
shuttles that operate on demand and in a decentralized manner using a wire-
less network [40]; a multi-agent approach to an AGV transportation system
that allows agents to flexibly adapt their behavior to changes in their con-
text, realizing cooperative self-adaptation [41]; and the Rainbow system [42],
whose architecture was mapped by Shaw to the classical control loop in control
theory [43].

4.3 Control Loops and Natural Systems

In contrast to engineered self-adaptive systems, biologically or sociologically in-
spired systems do not often have clearly visible control loops. Furthermore, the



16 B.H.C. Cheng et al.

systems are often decentralized in such a way that the agents do not have a sense
of the global goal but rather it is the interaction of their local behaviour that
yields the global goal as an emergent property.

Nature is full of self-adapting systems that leverage mechanisms and types
of control loops far removed from those we use today when engineering self-
adaptive systems. Mining this rich collection of systems and creating a catalogue
of feedback types and self-adaption techniques is an important and likely fruitful
endeavour our community must undertake.

Some software systems that leverage mechanisms found in nature already
exist and promise a bright future for nature-inspired software engineering tech-
niques. For example, in systems built using the crystal-growth-inspired tile archi-
tectural style [44], components distributed around the Internet come together to
“self-assemble” and “self-organize” into a solution to an NP-complete problem.
These systems can self-adapt to exhibit properties of fault and adversary toler-
ance [45]. The self-adaptation control loop is not easily evident in the nature’s
process of crystal growth, but it does exist and increasing our understanding
of such control loops will increase our ability to engineer self-adaptive software
systems.

In addition to discovering new self-adaptation mechanisms, mining natural
systems and creating a catalogue can facilitate engineering of new novel mecha-
nisms as the combinations of existing ones. For example, while many systems in
nature use bottom-up adaptation mechanisms, it may be possible to unify the
self-adaptive top-down and self-organizing (bottom-up) mechanisms via software
architecture by considering metadata and policies with adaptation properties
and control-loop reasoning explicitly, both at design-time and run-time [46].

4.4 Control Loops and Software Engineering

We have observed that control loops are often hidden, abstracted, or internal-
ized when presenting the architecture of self-adaptive systems [43]. However, the
feedback behaviour of a self-adaptive system, which is realized with its control
loops, is a crucial feature and, hence, should be elevated to a first-class entity in
its modelling, design, and implementation.

When engineering a self-adaptive system, the properties of the control loops
affect the system’s design and architecture. Therefore, besides the control loops,
those control loops’ properties must be made explicit as well. In one approach,
Cheng et al. [47] advocate making self-adaptation external, as opposed to internal
or hard-wired, to separate the concerns of system functionality from the concerns
of self-adaptation.

Despite recent attention to self-adaptive systems (e.g., several ICSE work-
shops), development and analysis methods for such systems do not yet provide
sufficient explicit focus on the control loops and their associated properties that
almost inevitably control self-adaptation.

The idea of increasing the visibility of control loops in software architectures
and software methods is not new. Over a decade ago, Shaw compared a software
design method based on process control to an object-oriented design method [48].



Software Engineering for Self-Adaptive Systems: A Research Roadmap 17

She introduced a new software organization paradigm based on control loops,
one with an architecture that is dominated by feedback loops and their analyses,
rather than by the identification of discrete stateful objects.

4.5 Research Challenges in Engineering

We have argued that control loops are essential for self-adaptive systems. There-
fore, control loops must become first-class entities when engineering self-adaptive
systems. Understanding and reasoning about the control loops of a self-adaptive
systems is integral to advancing the engineering of self-adaptive systems’ matu-
ration from an ad-hoc, trial-and-error endeavour to a disciplined approach. We
identify the following issues as the current most critical challenges that must be
addressed in order to achieve a disciplined approach to engineering self-adaptive
systems:

Modelling. Making the control loops explicit and exposing self-adaptive prop-
erties to allow the designer to reason about the system modelling support for
control loops.

Architecture. Developing reference architectures for adaptive systems that
address issues such as structural arrangements of control loops (e.g., sequential,
parallel, hierarchy, decentralized), interactions among control loops, data flow
around the control loops, tolerances, trade-offs, sampling rates, stability and
convergence conditions, hysteresis specifications, and context uncertainty.

Design. Compiling a catalogue of common control-loop schemes and charac-
terizing control-loop elements, along with associated obligations in the form of
patterns to help classify specific kinds of interacting control loops, e.g., for man-
ual vs. automatic control or for decoupling control loops from one another. These
control-loop schemes should come from exploring existing knowledge in control
engineering, as well as other fields that use feedback, and from mining naturally
occurring systems that use adaptation.

Middleware Support. Developing middleware support to “allow researchers
with different motivations and experiences to put their ideas in practice, free
from the painful details of low-level system implementation” [49] by supporting
a framework and standardized interfaces for self-adaptive functionality.

Verification & Validation. Creating validation and verification techniques to
test and evaluate control loops’ behaviour and automatically detect unintended
interactions.

Reengineering. Exploring techniques for evolving existing systems and
injecting self-adaptation into such systems.



18 B.H.C. Cheng et al.

Human-Computer Interaction. Analyzing feedback types from human-com-
puter interaction and devising novel mechanisms for exposing the control loops
to the users, keeping the users of self-adapting systems “in the loop” to ensure
their trust.

5 Assurances

The goal of system assurance is simple. Developers need to provide evidence that
the set of stated functional and non-functional properties are satisfied during
system’s operation. While the goal is simple, achieving it is not. Traditional
verification and validation methods, static or dynamic, rely of stable descriptions
of software models and properties. The characteristics of self-adaptive systems
create new challenges for developing high-assurance systems. Current verification
and validation methods do not align well with changing goals and requirements
as well as variable software functionality. Consequently, novel verification and
validation methods are required to provide assurance in self-adaptive systems.

In this section, we present a generalized verification and validation framework
which specifically targets the characteristics of self-adaptive systems. Thereafter,
we present a set of research challenges for verification and validation methods
implied by the presented framework.

5.1 Assurances Framework

Self-adaptive systems are highly context dependent. Whenever the system’s con-
text changes the system has to decide whether it needs to adapt. Whenever the
system decides to adapt, this may prompt the need for verification activities to
provide continual assessment. Moreover, depending on the dynamics of change,
verification activities may have to be embedded in the adaptation mechanism.

Due to the uniqueness of such assessment process, we find it necessary to
propose a framework for adaptive system assurance. This framework is depicted
in Figure 2. Over a period of operation, the system operates through a series of
operational modes. Modes, represented in Figure 2 by index j, represent known
and, in some cases, unknown phases in the computational lifecycle. Examples
of known modes in flight control include altitude hold mode, flare mode and
touchdown mode. Sequences of behavioural adjustments in the known modes are
known. But, continuing with the same example, if failures change the airframe
dynamics, the application’s context changes and software control needs to sense
and adapt to the conditions unknown prior to the deployment.

Such adaptations are reflected in a series of context - system state (whatever
this is for a self-adaptive system) configurations. (C+S)ji denotes the ith combi-
nation of context and system state in a cycle which is related to the requirements
of the system mode j. At the level of configurations it is irrelevant whether the
context or the system state changes (transition tj0), the result always is a new
configuration.

Goals and requirements of a self-adaptive system may also change during run-
time. We abstract from the subtle differences between goals and requirements



Software Engineering for Self-Adaptive Systems: A Research Roadmap 19

Mj0

mj0

Mj1

(C + S)j1(C + S)j0

Mjk

(C + S)jktjk−1

|= Pj

j-1 j+1

|=
tj0|=

mjk−1

P
t
j0

P
t
jk−1

Fig. 2. V & V model

for the generalized framework and instead use the more generic term proper-
ties. In self-adaptive systems, properties may change over time in response to
changes in the system context or the system state. Properties might be relevant
in one context and completely irrelevant in some other. Properties might even
be weighted against each other, resulting in a trade offs between properties and,
thus, their partial fulfilment. Properties can also be related to each other. Global
properties like safety requirements must be satisfied over the entire life time of
a system, through all the system modes. Different local properties P t

ji
within

a context might guarantee a global property. Similarly, a local property may
guarantee that a global property is not invalidated by the changes.

Verification of the properties typically relies on the existence of models.
System dynamics and changing requirements of self-adaptive systems make it
impossible to build a steady model before system deployment and perform all
verification tasks on such a model. Therefore, models need to be built and main-
tained at run-time. In Figure 2, Mji is the model that corresponds to configura-
tion (C + S)ji . Each change in the system configuration needs to be reflected at
model level as well, letting the model evolve accordingly from one configuration
to the other, not necessarily linearly as depicted in Figure 2. Delays in model
definition may also be inevitable. In Figure 2, the evolution of models from one
configuration to the other is denoted by mji . The complexity of such evolution
moves along two dimensions. On one side the model must be efficiently updated
to reflect the system changes, on the other it should still reflect an accurate
representation of reality.

5.2 Research Challenges in Assurances

While verification and validation of properties in distributed systems is not
a novel problem, a number of additional issues arise in the context of self-
adaptation due to the nature of these applications. Self-adapting systems have



20 B.H.C. Cheng et al.

to contend with dynamic changes in modes and contexts as well as the dynamic
changes in user requirements. Due to this high dynamism, V&V methods tra-
ditionally applied at requirements and design stages of development must be
supplemented with run-time assurance techniques.

Dynamic Identification of Changing Requirements. System requirements
can change implicitly, as a result of a change in context. Since in dynamic en-
vironments all eventualities cannot be anticipated, self-adapting systems have
to be able to identify new contexts. There will inevitably be uncertainty in the
process of context identification. Once the context is identified, utility functions
evaluate trade-offs between the properties (goals) aligned with the context. The
adequacy of context identification and utility functions is subject to verification.
It appears that failure detection and identification techniques from distributed
fault tolerant computing are a special case of context identification. Given that
all such techniques incorporate uncertainty, probabilistic approaches to assur-
ance seem to be the most promising research direction.

Adaptation-Specific Model-Driven Environments. To deal with the chal-
lenges of adaptation we envisage a model-driven development, where models
play a key role throughout the development [50]. Models allow the application of
verification and validation methods during the development process and can sup-
port self-adaptation at run-time. In fact, models can support estimation of sys-
tem’s status, so that the impact of a context change can be predicted. Provided
that such predictions are reliable, it should be possible to perform model-based
adaptation analysis as a verification activity [51]. A key issue in this approach
is to keep the run-time models synchronized with the changing system. Any
model based verification, therefore, presumes the availability of accurate change
tracking algorithms that keep system model synchronized with the run-time
environment. Uncertain model attributes can be described, for example, using
probability distribution functions, the attribute value ranges, or using the analy-
sis of historical attribute values. These methods can take advantage of probability
theory and statistics that helped solve stochastic problems in the past.

Agile Run-Time Assurance. In situations when models that accurately rep-
resent the dynamic interaction between system context and state cannot be de-
veloped, performing verification activities that address verification at run-time
are inevitable. The key requirement for run-time verification is the existence of
efficient agile solution algorithms which do not require high space/time complex-
ity. Self-adaptive systems may change their state quickly to respond to context
or property changes. An interesting class of verification techniques is that in-
spired by Proof-Carrying Code (PCC). PCC is a technique by which a host
platform can verify that code provided that needs to be executed adheres to a
predefined, still limited, set of safety rules. The limitation of the PCC paradigm
is that executed code must contain a formal safety proof that attests to the fact
that the code respects the defined safety policy. Defining such kind of proofs



Software Engineering for Self-Adaptive Systems: A Research Roadmap 21

for code segments which are parameterized and undergo changes and for larger
classes of safety properties is a challenge. When formal property proofs do not
seem feasible, run-time assurance techniques may rely on demonstrable prop-
erties of adaptation, like convergence and stability. Adaptation is a transient
behaviour and the fact that a sequence of observable states converge towards a
stable state is always desirable. Transient states may not satisfy local or global
properties (or we just cannot prove that they do). Therefore, the analysis of the
rate of convergence may inspire confidence that system state will predictably
quickly reach a desirable state. Here we intentionally use term “desirable” rather
than “correct” state because we may not know what a correct adaptation is in
an unforeseen context [52]. This problem necessitates investigation of scientific
principles needed to move software assurance beyond current conceptions and
calculations of correctness.

Liability and Social Aspects. Adaptive functionality in safety-critical sys-
tems is already a reality. Applications of adaptive computing in safety critical
systems are on the rise [39,53]. Autonomous software adaptation raises new chal-
lenges in the legal and social context. Generally, if software does not perform as
expected, the creator may be held liable. Depending on the legal theory, differ-
ent issues will be relevant in a legal inquiry [54]. Software vendors may have a
difficult time to argue that they applied the expected care when developing a crit-
ical application if the software is self-adaptive. Software may enter unforeseeable
states that have never been tested or reasoned about. It can be also argued that
current state-of-the-art engineering practices are not sufficiently mature to war-
rant self-adaptive functionality. However, certain liability claims for negligence
may be rebutted if it can be show safety mechanisms could disable self-adaptive
functionality in hazardous situations. Assurance of self-adaptive software is then
not only a step to make the product itself safer, but should be considered a valid
defence against liability claims.

6 Lessons and Challenges

In this section, we present the overall conclusions of the roadmap paper in the
context of lessons learned and the major ensuing challenges for our community.
First and foremost, we must point out that this exercise had no intention of being
exhaustive. We made the choice to focus on the four major issues we identified as
the key in the software engineering of self-adaptive systems process: modelling
dimensions, requirements, engineering, and assurances.

The presentations of each of the four views intend not to cover all the re-
lated aspects, but rather focused theses as a means for identifying the challenges
associated with each view. The four identified theses are:

– modelling dimensions - the need to enumerate and classify modelling di-
mensions for obtaining precise models to support run-time reasoning and
decision making for achieving self-adaptability;



22 B.H.C. Cheng et al.

– requirements - the need to define a new requirements language for handling
uncertainty to give self-adaptive systems the freedom to do adaptation;

– engineering - the need to consider feedback control loops as first-class entities
during engineering of self-adaptive systems;

– assurances - the need to define novel verification and validation methods for
the provision of assurances that cover the self-adaptation of systems.

We now summarize the most important challenges of each the views identified.

Modelling Dimensions. A major challenge in modelling dimensions is defining
models that can represent a wide range of system properties. The more precise
the models are, the more effective they should be in supporting run-time analysis
and decision process. However, at the same time, models should be sufficiently
general and simple to keep synthesis feasible. Defining utility functions for sup-
porting decision making is a challenging task, and we need practical techniques
to specify and generate such utility functions.

Requirements. The major challenge in requirements is defining a new lan-
guage capable of capturing uncertainty at an abstract level. Once we consider
uncertainty at the requirements stage, we must also find means of managing it.
Thus, we need to represent the trade offs between the flexibility provided by
the uncertainty and the assurances required by the application. Since require-
ments might vary at run-time, systems should be aware of their own require-
ments, creating a need for requirements reflection and online goal refinement.
It is important to note that requirements should not be considered in isolation
and we must develop techniques for mapping requirements into architecture and
implementation.

Engineering. In order to properly engineer self-adaptive software systems, the
feedback control loop must become a first-class entity throughout the process.
To allow this, there is the need for modelling support to make the loop’s role
explicit. Explicit modelling of the loops will ease reifying system properties to
allow their query and modification at run-time. In order to facilitate reasoning
between system properties and the feedback control loop, reference architectures
must highlight key aspects of the loop, such as, number, structural arrangements,
interactions, and stability conditions. In order to maintain users’ trust, certain
aspects of the control must be exposed to the users. Finally, in order to facilitate
organized use and reuse of self-adaptation mechanisms, the community must
compile a catalog of feedback control loops, explicitly explaining their properties,
benefits and shortcomings, and interaction possible methods for interaction with
other loops.

Assurances. The major challenge in assurances is supplementing traditional
methods applied at requirements and design stages of development with
run-time assurances. Since system context is dynamic at run-time, systems must
identify new contexts dynamically. In order to handle the uncertainty associated



Software Engineering for Self-Adaptive Systems: A Research Roadmap 23

with this process, models must include uncertainty via, e.g., probabilistic ap-
proaches. Further, adaptation-specific model-driven environments may facilitate
modelling support of run-time self-adaptation; however, these environments must
be lightweight, in order to allow run-time verification without impacting system
performance. One approach to run-time verification of assurances is the labelling
of such assurances as “desirable,” rather than “required.”

There are several aspects related to software engineering of self-adaptive sys-
tems that we did not cover. One of them is processes, which are an integral part
of software engineering. Software engineering processes are essentially associated
with design-time; however, engineering of self-adaptive systems will also require
run-time processes for handling change. This may require re-evaluating how soft-
ware should be developed for self-adaptive systems. For example, instead of a
single process, two complementary processes may be required for coordinating
the design-time and run-time activities of building software, which might lead to
a whole new way of developing software. Technology should enable and influence
the development of self-adaptive systems. Other aspects of software engineer-
ing related to self-adaptation are technologies like model-driven development,
aspect-oriented programming, and software product lines. These technologies
might offer new opportunities and offer new processes in the development of
self-adaptive systems.

During the course of our work, we have learned that the area of self-adaptive
systems is vast and multidisciplinary. Thus, it is important for software engi-
neering to learn and borrow from other fields of knowledge that are working or
have being working in the development and study of similar systems, or have
already contributed solutions that fit the purpose of self-adaptive systems. We
have already mentioned some of the fields, such as control theory and biology,
but decision theory, non-classic computation, and computer networks may also
prove to be useful. Finding a solution in one of these fields that fits our needs ex-
actly is unlikely; however, studying a wide range of exemplars is likely to provide
necessary knowledge of benchmarks, methods, techniques, and tools to solve the
challenges of engineering self-adaptive software systems.

The four theses we have discussed in this paper outline new challenges that
our community must face in engineering self-adapting software systems. These
challenges all result from the dynamic nature of adaptation. This dynamic na-
ture brings uncertainty that some traditional software engineering principles and
techniques are the proper way to go about designing self-adaptive systems and
will likely require novel solutions.

References

1. Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Northrop, L., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-large-scale
systems: The software challenge of the future. Technical report, Software Engineer-
ing Institute (2006), http://www.sei.cmu.edu/uls/

http://www.sei.cmu.edu/uls/


24 B.H.C. Cheng et al.

2. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Towards a classification of self-
adaptive software system. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525.
Springer, Heidelberg (2009)

3. Seetharaman, G., Lakhotia, A., Blasch, E.P.: Unmanned Vehicles Come of Age:
The DARPA Grand Challenge. Computer 39, 26–29 (2006)

4. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7, 125–151 (2008)

5. Jackson, M.: The meaning of requirements. Annals of Software Engineering 3, 5–21
(1997)

6. Laprie, J.C.: From dependability to resilience. In: International Conference on De-
pendable Systems and Networks (DSN 2008), Anchorage, AK, USA, pp. G8–G9
(2008)

7. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 285–303. IEEE Computer
Society, Minneapolis (2007)

8. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In:
IEEE International Symposium on Requirements Engineering (RE 1995), pp. 140–
147 (1995)

9. Savor, T., Seviora, R.: An approach to automatic detection of software failures in
realtime systems. In: IEEE Real-Time Technology and Applications Symposium,
pp. 136–147 (1997)

10. Sutcliffe, A., Fickas, S., Sohlberg, M.M.: PC-RE a method for personal and con-
text requirements engineering with some experience. Requirements Engineering
Journal 11, 1–17 (2006)

11. Liaskos, S., Lapouchnian, A., Wang, Y., Yu, Y., Easterbrook, S.: Configuring com-
mon personal software: a requirements-driven approach. In: 13th IEEE Interna-
tional Conference on Requirements Engineering (RE 2005), pp. 9–18. IEEE Com-
puter Society, Los Alamitos (2005)

12. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: CASCON 2006: Proceedings of the 2006
Conference of the Center for Advanced Studies on Collaborative Research, p. 7.
ACM, New York (2006)

13. Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.C.: Goal-based
modeling of dynamically adaptive system requirements. In: 15th Annual IEEE
International Conference on the Engineering of Computer Based Systems (ECBS)
(2008)

14. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal directed requirements ac-
quisition. In: Selected Papers of the Sixth International Workshop on Software
Specification and Design (IWSSD), pp. 3–50 (1993)

15. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE International Symposium on Requirements Engineering
(RE 1997), Washington, DC, USA, p. 226 (1997)

16. Harel, D., Marelly, R.: Come Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2005)

17. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program seman-
tics. Journal of Systems and Software (JSS), Architecting Dependable Systems 79,
1361–1369 (2006)

18. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over incon-
sistent viewpoints. In: Proceedings of International Conference on Software Engi-
neering (ICSE 2001), pp. 411–420 (2001)



Software Engineering for Self-Adaptive Systems: A Research Roadmap 25

19. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness
and inconsistency. Requirements Engineering Journal 11, 174–193 (2006)

20. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-
niques. Software: Practice and Experience 35, 705–754 (2005)

21. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.: A language for self-adaptive
system requirement. In: SOCCER Workshop (2008)

22. Finkelstein, A.: Requirements reflection. Dagstuhl Presentation (2008)
23. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-

ware. In: Proceedings of International Conference on Software Engineering (ICSE
2006), Shanghai,China (2006)

24. Robinson, W.N.: Monitoring web service requirements. In: Proceedings of Interna-
tional Requirements Engineering Conference (RE 2003), pp. 65–74 (2003)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE
2007: 2007 Future of Software Engineering, Minneapolis, MN, USA, pp. 259–268.
IEEE Computer Society, Los Alamitos (2007)

26. Maes, P.: Computional reflection. PhD thesis, Vrije Universiteit (1987)
27. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware.

Communications of the ACM 45, 33–38 (2002)
28. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A generic compo-

nent model for building systems software. ACM Transactions on Computer Systems
(2008)

29. Robinson, W.: A requirements monitoring framework for enterprise systems. Re-
quirements Engineering 11, 17–24 (2006)

30. Tanner, J.A.: Feedback control in living prototypes: A new vista in control engi-
neering. Medical and Biological Engineering and Computing 1(3), 333–351 (1963),
http://www.springerlink.com/content/rh7wx0675k5mx544/

31. Dumont, G., Huzmezan, M.: Concepts, methods and techniques in adaptive control.
In: Proceedings American Control Conference (ACC 2002), Anchorage, AK, USA,
vol. 2, pp. 1137–1150 (2002)

32. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litiou, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Sci-
ence Hot Topics, vol. 5525 (2009)

33. Dobson, S., Denazis, S., Fernández, A., Gäıti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications.
ACM Transactions Autonomous Adaptive Systems (TAAS) 1(2), 223–259 (2006)

34. Burns, R.: Advanced Control Engineering. Butterworth-Heinemann (2001)
35. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 10th edn. Prentice-Hall, En-

glewood Cliffs (2005)
36. Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Princeton Uni-

versity Press, Princeton (1999)
37. Söderström, T., Stoica, P.: System Identification. Prentice-Hall, Englewood Cliffs

(1988)
38. Schloss Dagstuhl Seminar 08031 Wadern, Germany: Software Engineering for Self-

Adaptive Systems (2008), http://www.dagstuhl.de/08031/
39. Liu, Y., Cukic, B., Fuller, E., Yerramalla, S., Gururajan, S.: Monitoring tech-

niques for an online neuro-adaptive controller. Journal of Systems and Software
(JSS) 79(11), 1527–1540 (2006)

http://www.dagstuhl.de/08031/
http://www.springerlink.com/content/rh7wx0675k5mx544/


26 B.H.C. Cheng et al.

40. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool support for the design of self-optimizing mechatronic multi-agent systems.
International Journal on Software Tools for Technology Transfer (STTT) 10 (2008)
(to appear)

41. Weyns, D.: An architecture-centric approach for software engineering with situated
multiagent systems. PhD thesis, Department of Computer Science, K.U. Leuven,
Leuven, Belgium (2006)

42. Garlan, D., Cheng, S.W., Schmerl, B.: Increasing system dependability through
architecture-based self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677. Springer, Heidelberg (2003)

43. Müller, H.A., Pezzè, M., Shaw, M.: Visibility of control in adaptive systems. In:
Second International Workshop on Ultra-Large-Scale Software-Intensive Systems
(ULSSIS 2008), ICSE 2008 Workshop (2008)

44. Brun, Y., Medvidovic, N.: An architectural style for solving computationally inten-
sive problems on large networks. In: Proceedings of Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS 2007), Minneapolis, MN, USA (2007)

45. Brun, Y., Medvidovic, N.: Fault and adversary tolerance as an emergent property
of distributed systems’ software architectures. In: Proceedings of the 2nd Interna-
tional Workshop on Engineering Fault Tolerant Systems (EFTS 2007), Dubrovnik,
Croatia, pp. 38–43 (2007)

46. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: Metaself - a
framework for designing and controlling self-adaptive and self-organising systems.
Technical Report BBKCS-08-08, School of Computer Science and Information Sys-
tems, Birkbeck College, London, UK (2008)

47. Cheng, S.W., Garlan, D., Schmerl, B.: Making self-adaptation an engineering re-
ality. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van
Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 158–173.
Springer, Heidelberg (2005)

48. Shaw, M.: Beyond objects. ACM SIGSOFT Software Engineering Notes
(SEN) 20(1), 27–38 (1995)

49. Babaoglu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel,
A.P.A.: The self-star vision. In: Babaoglu, O., Jelasity, M., Montresor, A., Fetzer,
C., Leonardi, S., van Moorsel, A. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp.
1–20. Springer, Heidelberg (2005)

50. Inverardi, P., Tivoli, M.: The future of software: Adaptation and dependability. In:
ISSSE 2008, pp. 1–31 (2008)

51. Sama, M., Rosenblum, D., Wang, Z., Elbaum, S.: Model-based fault detection in
context-aware adaptive applications. In: International Symposium on Foundations
of Software Engineering (2008)

52. Liu, Y., Cukic, B., Gururajan, S.: Validating neural network-based online adaptive
systems: A case study. Software Quality Journal 15(3), 309–326 (2007)

53. Hageman, J.J., Smith, M.S., Stachowiak, S.: Integration of online parameter iden-
tification and neural network for in-flight adaptive control. Technical Report
NASA/TM-2003-212028, NASA (2003)

54. Kaner, C.: Software liability. Software QA 4 (1997)


	Software Engineering for Self-Adaptive Systems: A Research Roadmap
	Introduction
	Modelling Dimensions
	Illustrative Case
	Overview of Modelling Dimensions
	Research Challenges in Modelling Dimensions

	Requirements
	Requirements State-of-the-Art
	Research Challenges in Requirements

	Engineering
	Control Loop Model
	Control Loops and Control Theory
	Control Loops and Natural Systems
	Control Loops and Software Engineering
	Research Challenges in Engineering

	Assurances
	Assurances Framework
	Research Challenges in Assurances

	Lessons and Challenges


